Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Probing warm dense lithium by inelastic X-ray scattering

Abstract

One of the grand challenges of contemporary physics is understanding strongly interacting quantum systems comprising such diverse examples as ultracold atoms in traps, electrons in high-temperature superconductors and nuclear matter1. Warm dense matter, defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of such interacting matter2. Moreover, the study of warm dense matter states has practical applications for controlled thermonuclear fusion, where it is encountered during the implosion phase3, and it also represents laboratory analogues of astrophysical environments found in the core of planets and the crusts of old stars4,5. Here we demonstrate how warm dense matter states can be diagnosed and structural properties can be obtained by inelastic X-ray scattering measurements on a compressed lithium sample. Combining experiments and ab initio simulations enables us to determine its microscopic state and to evaluate more approximate theoretical models for the ionic structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental configuration.
Figure 2: Radiation hydrodynamic simulations.
Figure 3: Best-fit analysis.
Figure 4: Calibrated scattering spectra.
Figure 5: Ion-ion structure factors.

Similar content being viewed by others

References

  1. National Research Council. Frontiers in High Energy Density Physics : The X-Games of Contemporary Science (National Academies Press, 2003).

    Google Scholar 

  2. Ichimaru, S. Strongly coupled plasmas: High-density classical plasmas and degenerate electron liquids. Rev. Mod. Phys. 54, 1017–1059 (1982).

    Article  ADS  Google Scholar 

  3. Lindl, J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933–4024 (1995).

    Article  ADS  Google Scholar 

  4. Guillot, T. Interiors of giant planets inside and outside the solar system. Science 286, 72–76 (1999).

    Article  ADS  Google Scholar 

  5. Vocadlo, L. et al. Possible thermal and chemical stabilization of body-centered-cubic iron in the Earth’s core. Nature 424, 536–539 (2003).

    Article  ADS  Google Scholar 

  6. Koenig, M. et al. Progress in the study of warm dense matter. Plasma Phys. Control. Fusion 47, B441–B449 (2005).

    Article  Google Scholar 

  7. Rygg, J. R. et al. Proton radiography of inertial fusion implosions. Science 319, 1223–1225 (2008).

    Article  ADS  Google Scholar 

  8. Glenzer, S. H. et al. Demonstration of spectrally resolved x-ray scattering in dense plasmas. Phys. Rev. Lett. 90, 175002 (2003).

    Article  ADS  Google Scholar 

  9. Glenzer, S. H. et al. Observations of plasmons in warm dense matter. Phys. Rev. Lett. 98, 065002 (2007).

    Article  ADS  Google Scholar 

  10. Ravasio, A. et al. Direct observation of strong ion coupling in laser-driven shock-compressed targets. Phys. Rev. Lett. 99, 135006 (2007).

    Article  ADS  Google Scholar 

  11. Chihara, J. Difference in x-ray scattering between metallic and non-metallic liquids due to conduction electrons. J. Phys. Condens. Matter 12, 231–247 (2000).

    Article  ADS  Google Scholar 

  12. Gregori, G., Ravasio, A., Höll, A., Glenzer, S. H. & Rose, S. J. Derivation of static structure factor in strongly coupled non-equilibrium plasmas for x-ray scattering studies. High Energy Density Phys. 3, 99–108 (2007).

    Article  ADS  Google Scholar 

  13. Kresse, G. & Hafner, J. Ab-initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, RC558–RC561 (1993).

    Article  ADS  Google Scholar 

  14. Kresse, G. & Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous–semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  ADS  Google Scholar 

  15. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  16. Sawada, H. et al. Diagnosing direct-drive, shock-heated, and compressed plastic planar foils with non-collective spectrally resolved x-ray scattering. Phys. Plasmas 14, 122703 (2007).

    Article  ADS  Google Scholar 

  17. Izvekov, S., Parinello, M., Burnham, C. J. & Voth, G. A. Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching. J. Chem. Phys. 120, 10896–10913 (2004).

    Article  ADS  Google Scholar 

  18. Hone, T. D., Izvekov, S. & Voth, G. A. Fast centroid molecular dynamics: A force-matching approach for the predetermination of the effective centroid forces. J. Chem. Phys. 122, 054105 (2005).

    Article  ADS  Google Scholar 

  19. Wünsch, K., Hilse, P., Schlanges, M. & Gericke, D. O. Structure of strongly coupled multicomponent plasmas. Phys. Rev. E. 77, 056404 (2008).

    Article  ADS  Google Scholar 

  20. Danson, C. N. et al. Well characterized 1019 W cm−2 operation of VULCAN—an ultra-high power Nd:glass laser. J. Mod. Opt. 45, 1653–1669 (1998).

    ADS  Google Scholar 

  21. Paterson, I. J. et al. Image plate response for conditions relevant to laser–plasma interaction experiments. Meas. Sci. Technol. 19, 095301 (2008).

    Article  Google Scholar 

  22. Pak, A. et al. X-ray line measurements with high efficiency Bragg crystals. Rev. Sci. Instrum. 75, 3747–3749 (2004).

    Article  ADS  Google Scholar 

  23. Osborn, K. D. & Callcott, T. A. Two new optical designs for soft x-ray spectrometers using variable-linespace gratings. Rev. Sci. Instrum. 66, 3131–3136 (1995).

    Article  ADS  Google Scholar 

  24. MacFarlane, J. J. et al. HELIOS-CR—A 1D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. J. Quant. Spectrosc. Radiat. Transfer 99, 381–397 (2006).

    Article  ADS  Google Scholar 

  25. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  Google Scholar 

  26. Mermin, N. D. Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  27. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  29. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  ADS  Google Scholar 

  30. Van Leuwen, J. M. J., Groenveld, J. & DeBoer, J. New method for the calculation of the pair correlation function. Physica 25, 792–808 (1959).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by EPSRC grants and by the Science and Technology Facilities Council of the United Kingdom. Additional support from the US DOE and the Lawrence Livermore National Laboratory is also acknowledged. We thank the Vulcan operation, engineering and target fabrication groups for their support during the experiment.

Author information

Authors and Affiliations

Authors

Contributions

E.G.S., G.G., B.B., R.J.C., F.Y.K., M.M.N., A.P., R.L.W. and D.R. carried out the Vulcan experiment. E.G.S., G.G., S.H.G., P.N., A.P., D.P., M.R. and M.S. carried out preparatory experiments and diagnostics development at the Lawrence Livermore National Laboratory. E.G.S., G.G., F.Y.K. and D.R. analysed the data. E.G.S., G.G. and D.O.G. wrote the paper. The simulations were carried out by D.O.G., J.V. and K.W. C.S. and G.G. designed targets used in the experiment. R.R.F., S.H.G., M.K., O.L.L., D.N., M.R. and L.v.W. provided additional experimental and theoretical support. G.G., S.H.G. and D.R. conceived the project in this paper.

Corresponding author

Correspondence to G. Gregori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Saiz, E., Gregori, G., Gericke, D. et al. Probing warm dense lithium by inelastic X-ray scattering. Nature Phys 4, 940–944 (2008). https://doi.org/10.1038/nphys1103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing