Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of an electrically tunable band gap in trilayer graphene

Abstract

A striking feature of bilayer graphene is the induction of a significant band gap in the electronic states by the application of a perpendicular electric field1,2,3,4,5,6,7. Thicker graphene layers are also highly attractive materials. The ability to produce a band gap in these systems is of great fundamental and practical interest. Both experimental8 and theoretical9,10,11,12,13,14,15,16 investigations of graphene trilayers with the typical ABA layer stacking have, however, revealed the lack of any appreciable induced gap. Here we contrast this behaviour with that exhibited by graphene trilayers with ABC crystallographic stacking. The symmetry of this structure is similar to that of AB-stacked graphene bilayers and, as shown by infrared conductivity measurements, permits a large band gap to be formed by an applied electric field. Our results demonstrate the critical and hitherto neglected role of the crystallographic stacking sequence on the induction of a band gap in few-layer graphene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure and tight-binding diagrams for trilayer graphene with ABA and ABC stacking order.
Figure 2: Comparison of optical conductivity σ(ω) of ABA and ABC graphene trilayers for different gate voltages Vg.
Figure 3: Dependence of the energy gap on the induced charge doping density for ABC trilayer graphene.

Similar content being viewed by others

References

  1. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    Article  ADS  Google Scholar 

  2. Castro, E. V. et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

    Article  ADS  Google Scholar 

  3. Oostinga, J. B., Heersche, H. B., Liu, X. L., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2008).

    Article  ADS  Google Scholar 

  4. Zhang, Y. B. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  ADS  Google Scholar 

  5. Mak, K. F., Lui, C. H., Shan, J. & Heinz, T. F. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009).

    Article  ADS  Google Scholar 

  6. Kuzmenko, A. B., Crassee, I., van der Marel, D., Blake, P. & Novoselov, K. S. Determination of the gate-tunable band gap and tight-binding parameters in bilayer graphene using infrared spectroscopy. Phys. Rev. B 80, 165406 (2009).

    Article  ADS  Google Scholar 

  7. Xia, F. N., Farmer, D. B., Lin, Y. M. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010).

    Article  ADS  Google Scholar 

  8. Craciun, M. F. et al. Trilayer graphene is a semimetal with a gate-tunable band overlap. Nature Nanotech. 4, 383–388 (2009).

    Article  ADS  Google Scholar 

  9. Guinea, F., Neto, A. H. C. & Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006).

    Article  ADS  Google Scholar 

  10. Aoki, M. & Amawashi, H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 142, 123–127 (2007).

    Article  ADS  Google Scholar 

  11. Avetisyan, A. A., Partoens, B. & Peeters, F. M. Electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 79, 035421 (2009).

    Article  ADS  Google Scholar 

  12. Avetisyan, A. A., Partoens, B. & Peeters, F. M. Electric-field control of the band gap and Fermi energy in graphene multilayers by top and back gates. Phys. Rev. B 80, 195401 (2009).

    Article  ADS  Google Scholar 

  13. Koshino, M. Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys. Rev. B 81, 125304 (2010).

    Article  ADS  Google Scholar 

  14. Kumar, S. B. & Guo, J. Multilayer graphene under vertical electric field. Appl. Phys. Lett. 98, 222101 (2011).

    Article  ADS  Google Scholar 

  15. Wu, B. R. Field modulation of the electronic structure of trilayer graphene. Appl. Phys. Lett. 98, 263107 (2011).

    Article  ADS  Google Scholar 

  16. Tang, K. et al. Electric-field-induced energy gap in few-layer graphene. J. Phys. Chem. C 115, 9458–9464 (2011).

    Article  Google Scholar 

  17. Zhou, S. Y. et al. Substrate-induced bandgap opening in epitaxial graphene. Nature Mater. 6, 916 (2007).

    Article  ADS  Google Scholar 

  18. Balog, R. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Mater. 9, 315–319 (2010).

    Article  ADS  Google Scholar 

  19. Latil, S. & Henrard, L. Charge carriers in few-layer graphene films. Phys. Rev. Lett. 97, 036803 (2006).

    Article  ADS  Google Scholar 

  20. Min, H. K. & MacDonald, A. H. Electronic structure of multilayer graphene. Prog. Theor. Phys. Suppl. 176, 227–252 (2008).

    Article  ADS  Google Scholar 

  21. Avetisyan, A. A., Partoens, B. & Peeters, F. M. Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys. Rev. B 81, 115432 (2010).

    Article  ADS  Google Scholar 

  22. Zhang, F., Sahu, B., Min, H. & MacDonald, A. H. Band structure of ABC -stacked graphene trilayers. Phys. Rev. B 82, 035409 (2010).

    Article  ADS  Google Scholar 

  23. Koshino, M. & McCann, E. Gate-induced interlayer asymmetry in ABA-stacked trilayer graphene. Phys. Rev. B 79, 125443 (2009).

    Article  ADS  Google Scholar 

  24. Mak, K. F., Shan, J. & Heinz, T. F. Electronic structure of few-layer graphene: Experimental demonstration of strong dependence on stacking sequence. Phys. Rev. Lett. 104, 176404 (2010).

    Article  ADS  Google Scholar 

  25. Lui, C. H. et al. Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2010).

    Article  ADS  Google Scholar 

  26. Mak, K. F., Sfeir, M. Y., Misewich, J. A. & Heinz, T. F. The evolution of electronic structure in few-layer graphene revealed by optical spectroscopy. Proc. Natl Acad. Sci. USA 107, 14999 (2010).

    Article  ADS  Google Scholar 

  27. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  ADS  Google Scholar 

  28. Li, Z. Q. et al. Band structure asymmetry of bilayer graphene revealed by infrared spectroscopy. Phys. Rev. Lett. 102, 037403 (2009).

    Article  ADS  Google Scholar 

  29. Kuzmenko, A. B. et al. Infrared spectroscopy of electronic bands in bilayer graphene. Phys. Rev. B 79, 115441 (2009).

    Article  ADS  Google Scholar 

  30. Norimatsu, W. & Kusunoki, M. Selective formation of ABC-stacked graphene layers on SiC(0001). Phys. Rev. B 81, 161410 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. L. Carr and R. Smith for technical support in the infrared measurement at Brookhaven National Laboratory, D. Efetov for support in device fabrication, and A. A. Avetisyan, B. Partoens, F. M. Peeters, M. Koshino, and Y. L. Li for discussions. The authors acknowledge support from the Office of Naval Research under the MURI program for device preparation and from the US Department of Energy under Energy Frontier Research Center grant DE-SC0001085 for spectroscopic measurements and analysis. E.C. acknowledges support from the European FP7 Marie Curie project PIEF-GA-2009-251904.

Author information

Authors and Affiliations

Authors

Contributions

C.H.L. and Z.L. fabricated and characterized the samples, and carried out the measurements. K.F.M. led the design of the experiment and analysis methods. E.C., K.F.M. and C.H.L. developed the theoretical treatment and performed the simulations. All authors discussed the experiment and analysis. C.H.L. and T.F.H. wrote the manuscript.

Corresponding author

Correspondence to Tony F. Heinz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 446 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lui, C., Li, Z., Mak, K. et al. Observation of an electrically tunable band gap in trilayer graphene. Nature Phys 7, 944–947 (2011). https://doi.org/10.1038/nphys2102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing