Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MYELODYSPLASTIC NEOPLASM

Rapid growth of acquired UBA1 mutations predisposes male patients to low-risk MDS

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clonal metrics, dynamics, mutational profiles and clinical outcomes of UBA1 mutant patients with hematologic manifestation.

References

  1. Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC, Pei W, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med. 2020;383:2628–38. https://doi.org/10.1056/NEJMoa2026834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Obiorah IEBD, Wang W, Ombrello A, Ferrada MA, Wu Z, Sikora KA, et al. Myelodysplasia and bone marrow manifestations of somatic UBA1 mutated autoinflammatory disease. Blood. 2020;136:20–21.

    Article  Google Scholar 

  3. Obiorah IE, Patel BA, Groarke EM, Wang W, Trick M, Ombrello AK, et al. Benign and malignant hematologic manifestations in patients with VEXAS syndrome due to somatic mutations in UBA1. Blood Adv. 2021;5:3203–15. https://doi.org/10.1182/bloodadvances.2021004976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stiburkova B, Pavelcova K, Belickova M, Magaziner SJ, Collins JC, Werner A, et al. Novel somatic UBA1 variant in a patient With VEXAS syndrome. Arthritis Rheumatol. 2023;75:1285–90. https://doi.org/10.1002/art.42471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sirenko M, Bernard E, Creignou M, Domenico D, Farina A, Arango Ossa JE, et al. Molecular and clinical presentation of UBA1-mutated myelodysplastic syndromes. Blood. 2024. https://doi.org/10.1182/blood.2023023723.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bourbon E, Heiblig M, Gerfaud Valentin M, Barba T, Durel CA, Lega JC, et al. Therapeutic options in VEXAS syndrome: insights from a retrospective series. Blood. 2021;137:3682–4. https://doi.org/10.1182/blood.2020010177.

    Article  CAS  PubMed  Google Scholar 

  7. Gutierrez-Rodrigues F, Kusne Y, Fernandez J, Lasho T, Shalhoub R, Ma X, et al. Spectrum of clonal hematopoiesis in VEXAS syndrome. Blood. 2023;142:244–59. https://doi.org/10.1182/blood.2022018774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26:1549–56. https://doi.org/10.1038/s41591-020-1008-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weeks LD, Niroula A, Neuberg D, Wong W, Lindsley RC, Luskin M, et al. Prediction of risk for myeloid malignancy in clonal hematopoiesis. NEJM Evid. 2023; 2. https://doi.org/10.1056/evidoa2200310.

  10. Oster HS, Crouch S, Smith A, Yu G, Abu Shrkihe B, Baruch S, et al. A predictive algorithm using clinical and laboratory parameters may assist in ruling out and in diagnosing MDS. Blood Adv. 2021;5:3066–75. https://doi.org/10.1182/bloodadvances.2020004055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Radhachandran A, Garikipati A, Iqbal Z, Siefkas A, Barnes G, Hoffman J, et al. A machine learning approach to predicting risk of myelodysplastic syndrome. Leuk Res. 2021;109:106639 https://doi.org/10.1016/j.leukres.2021.106639.

    Article  CAS  PubMed  Google Scholar 

  12. Galli A, Todisco G, Catamo E, Sala C, Elena C, Pozzi S, et al. Relationship between clone metrics and clinical outcome in clonal cytopenia. Blood. 2021;138:965–76. https://doi.org/10.1182/blood.2021011323.

    Article  CAS  PubMed  Google Scholar 

  13. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li P, Venkatachalam S, Ospina Cordona D, Wilson L, Kovacsovics T, Moser KA, et al. A clinical, histopathological, and molecular study of two cases of VEXAS syndrome without a definitive myeloid neoplasm. Blood Adv. 2022;6:405–9. https://doi.org/10.1182/bloodadvances.2021005243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Watson CJ, Papula AL, Poon GYP, Wong WH, Young AL, Druley TE, et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science. 2020;367:1449–54. https://doi.org/10.1126/science.aay9333.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PL designed the study and drafted the manuscript. PL, FA, WX, MW, YD, GZ, CZ, AWZ, YZ, and PWR collected patients’ clinical, hematologic, pathologic, cytogenetic, and molecular data. ST, AO, ABP, TT, and DS examined patients and provided clinical information. PL, WX, MW, YD, GZ, CZ, AWZ, YZ, AM, and PR interpreted and classified all variants by NGS testing. PL, WX, MW, YD, XZ, GZ, CZ, AWZ, YZ, RRM, MM, JJ, TG, and RO examined the bone marrow biopsies. WX and PL designed the clone growth models. All authors reviewed and approved the final manuscript. CZ was supported in part by the National Institutes of Health (R01CA237006) and the U.S. Department of Veterans Affairs (I01 BX004255).

Corresponding author

Correspondence to Peng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Alnoor, F.N.U., Xie, W. et al. Rapid growth of acquired UBA1 mutations predisposes male patients to low-risk MDS. Leukemia 39, 248–256 (2025). https://doi.org/10.1038/s41375-024-02397-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-024-02397-2

Search

Quick links