Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Structural basis of augmenting taurine uptake by the taurine transporter in alleviating cellular senescence

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural insights into TauT and its role in alleviating cellular senescence.

Data availability

The density maps and structure coordinates have been deposited to the Electron Microscopy Data Bank (EMDB) and the Protein Data Bank (PDB). TauT-DDM apo: accession numbers EMD-61451 and PDB-9JG5; TauT-Saposin A apo: accession numbers EMD-61450 and PDB-9JG4; TauT-Saposin A-taurine inward: accession numbers EMD-62147 and PDB-9K7B; TauT-Saposin A-taurine occluded: accession numbers EMD-62150 and PDB-9K7N.

References

  1. Lambert, I. H. et al. Acta Physiol. 213, 191–212 (2015).

    Article  CAS  Google Scholar 

  2. Jacobsen, J. G. & Smith, L. H. Physiol. Rev.48, 424-511 (1968).

  3. Baliou, S. et al. Mol. Med. Rep. 22, 2163–2173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao, T. et al. Cell 187, 2288–2304.e27 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Qvartskhava, N. et al. Proc. Natl. Acad. Sci. USA 116, 6313–6318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Preising, M. N. et al. FASEB J. 33, 11507–11527 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, H. et al. Nature 630, 247–254 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Zhu, A. et al. Nat. Struct. Mol. Biol. 30, 1012–1022 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Hu, T. et al. Nature 632, 930–937 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Yang, D. & Gouaux, E. Sci. Adv. 7, eabl3857 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nayak, S. R. et al. Nat. Struct. Mol. Biol. 30, 1023–1032 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dayan, O. et al. J. Biol. Chem. 292, 5418–5428 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, J. et al. Hepatology 78, 10–25 (2023).

    Article  PubMed  Google Scholar 

  14. Di Marcantonio, D. et al. Mol. Cell 81, 2752–2764.e6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu, R. Q. et al. Immunity 56, 180–192.e11 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The cryo-EM data were collected at the Advanced Center for Electron Microscopy, Shanghai Institute of Materials Medicine (SIMM). We sincerely thank the collaborative efforts of all staff, particularly Dr. Xuemei Yang, Dr. Canrong Wu, Miss Wen Hu, Miss Shuai Li and Mr Kai Wu for their invaluable assistance in cryo-EM data collection and structure determination. We express our appreciation to Dr. Junrui Li for providing data processing. We express our appreciation for providing experimental instruments from the Experimental Nuclear Medicine Laboratory, Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine. We express our appreciation to Dr. Huahua Song for providing experimental instruments. This work was partially supported by the National Key R&D Program of China (2022YFC2703105 to H.E.X.), the National Natural Science Foundation of China (82330018 to X.M.), and the CAS Strategic Priority Research Program (XDB37030103 to H.E.X.).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. initiated and conceived this project in collaboration with N.N.C. H.Z. designed the expression constructs, purified the TauT protein samples, prepared cryo-EM grids, calculated cryo-EM data, built and refined structural models, prepared figures and wrote the manuscript. N.N.C. conducted the transport assay, cell proliferation, RT-PCR, western blot, and RNA-Seq, performed aging-related assays, and prepared figures. H.E.X., in collaboration with X.M., supervised the project. H.E.X. edited the manuscript.

Corresponding authors

Correspondence to Xiong Ma or H. Eric Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41422_2025_1090_MOESM1_ESM.pdf

Supplementary information_Structural basis of augment taurine uptake by taurine transporter alleviating cellular senescence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Cui, N., Ma, X. et al. Structural basis of augmenting taurine uptake by the taurine transporter in alleviating cellular senescence. Cell Res 35, 385–388 (2025). https://doi.org/10.1038/s41422-025-01090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41422-025-01090-y

Search

Quick links