Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolutional heterochromatin condensation delineates chromocenter formation and retrotransposon silencing in plants

Abstract

Heterochromatic condensates (chromocenters) are critical for maintaining the silencing of heterochromatin. It is therefore puzzling that the presence of chromocenters is variable across plant species. Here we reveal that variations in the plant heterochromatin protein ADCP1 confer a diversity in chromocenter formation via phase separation. ADCP1 physically interacts with the high mobility group protein HMGA to form a complex and mediates heterochromatin condensation by multivalent interactions. The loss of intrinsically disordered regions (IDRs) in ADCP1 homologues during evolution has led to the absence of prominent chromocenter formation in various plant species, and introduction of IDR-containing ADCP1 with HMGA promotes heterochromatin condensation and retrotransposon silencing. Moreover, plants in the Cucurbitaceae group have evolved an IDR-containing chimaera of ADCP1 and HMGA, which remarkably enables formation of chromocenters. Together, our work uncovers a coevolved mechanism of phase separation in packing heterochromatin and silencing retrotransposons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variations in ADCP1 are associated with chromocenter formation in plants.
Fig. 2: High mobility group protein HMGA interacts with ADCP1.
Fig. 3: HMGA is required for the localization of ADCP1 in heterochromatin.
Fig. 4: HMGA promoted phase separation of ADCP1 with heterochromatin.
Fig. 5: ADCP1-HMGA promotes heterochromatic condensates formation in non-chromocenter plant species relying on the presence of IDRs.
Fig. 6: Introduction of IDR-containing AtADCP1 with AtHMGA promotes heterochromatin condensation and TE silencing.
Fig. 7: A model for the role of ADCP1-HMGA condensator in regulating heterochromatic phase separation and chromocenter organization.

Similar content being viewed by others

Data availability

All sequencing data generated in this study are available on the NCBI GEO under accession no. GSE233265. Source data are provided with this paper.

References

  1. Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Marsano, R. M., Giordano, E., Messina, G. & Dimitri, P. A new portrait of constitutive heterochromatin: lessons from Drosophila melanogaster. Trends Genet. 35, 615–631 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Jost, K. L., Bertulat, B. & Cardoso, M. C. Heterochromatin and gene positioning: inside, outside, any side? Chromosoma 121, 555–563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saksouk, N., Simboeck, E. & Dejardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8, 3 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Morrison, O. & Thakur, J. Molecular complexes at euchromatin, heterochromatin and centromeric chromatin. Int. J. Mol. Sci. 22, 6922 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Janssen, A., Colmenares, S. U. & Karpen, G. H. Heterochromatin: guardian of the genome. Annu. Rev. Cell Dev. Biol. 34, 265–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Dimitri, P., Corradini, N., Rossi, F. & Verni, F. The paradox of functional heterochromatin. Bioessays 27, 29–41 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Feng, W. & Michaels, S. D. Accessing the inaccessible: the organization, transcription, replication, and repair of heterochromatin in plants. Annu. Rev. Genet. 49, 439–459 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Simon, L., Voisin, M., Tatout, C. & Probst, A. V. Structure and function of centromeric and pericentromeric heterochromatin in Arabidopsis thaliana. Front. Plant Sci. 6, 1049 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jagannathan, M. & Yamashita, Y. M. Function of junk: pericentromeric satellite DNA in chromosome maintenance. Cold Spring Harb. Symp. Quant. Biol. 82, 319–327 (2017).

    Article  PubMed  Google Scholar 

  11. Marsano, R. M. & Dimitri, P. Constitutive heterochromatin in eukaryotic genomes: a mine of transposable elements. Cells 11, 761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. The Cold Spring Harbor Laboratory, Washington University Genome Sequencing Center & PE Biosystems Arabidopsis Sequencing Consortium. The complete sequence of a heterochromatic island from a higher eukaryote. Cell 100, 377–386 (2000).

  13. Lippman, Z. et al. Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, H., Lang, Z. & Zhu, J. K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 19, 489–506 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Jackson, J. P. et al. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112, 308–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Jacob, Y. et al. ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nat. Struct. Mol. Biol. 16, 763–768 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng, S. & Jacobsen, S. E. Epigenetic modifications in plants: an evolutionary perspective. Curr. Opin. Plant Biol. 14, 179–186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Underwood, C. J., Henderson, I. R. & Martienssen, R. A. Genetic and epigenetic variation of transposable elements in Arabidopsis. Curr. Opin. Plant Biol. 36, 135–141 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kabi, M. & Filion, G. J. Heterochromatin: did H3K9 methylation evolve to tame transposons? Genome Biol. 22, 325 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Padeken, J., Methot, S. P. & Gasser, S. M. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat. Rev. Mol. Cell Biol. 23, 623–640 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Grewal, S. I. S. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol. Cell 83, 1767–1785 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fransz, P., De Jong, J. H., Lysak, M., Castiglione, M. R. & Schubert, I. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc. Natl Acad. Sci. USA 99, 14584–14589 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yelagandula, R. et al. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell 158, 98–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, J., Jia, S. T. & Jia, S. New insights into the regulation of heterochromatin. Trends Genet. 32, 284–294 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Alper, B. J., Lowe, B. R. & Partridge, J. F. Centromeric heterochromatin assembly in fission yeast—balancing transcription, RNA interference and chromatin modification. Chromosome Res. 20, 521–534 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Almouzni, G. & Probst, A. V. Heterochromatin maintenance and establishment: lessons from the mouse pericentromere. Nucleus 2, 332–338 (2011).

    Article  PubMed  Google Scholar 

  31. Wang, H., Dittmer, T. A. & Richards, E. J. Arabidopsis CROWDED NUCLEI (CRWN) proteins are required for nuclear size control and heterochromatin organization. BMC Plant Biol. 13, 200 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pontvianne, F. & Grob, S. Three-dimensional nuclear organization in Arabidopsis thaliana. J. Plant Res. 133, 479–488 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Doğan, E. S. & Liu, C. Three-dimensional chromatin packing and positioning of plant genomes. Nat. Plants 4, 521–529 (2018).

    Article  PubMed  Google Scholar 

  34. Lindroth, A. M. et al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J. 23, 4286–4296 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30, 329–334 (2002).

    Article  PubMed  Google Scholar 

  36. Soppe, W. J. et al. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J. 21, 6549–6559 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Strom, A. R. et al. Phase separation drives heterochromatin ___domain formation. Nature 547, 241–245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Larson, A. G. et al. Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature 547, 236–240 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, L. et al. Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol. Cell 76, 646–659.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Sanulli, S. et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature 575, 390–394 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao, S. et al. Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. Cell Res. 29, 54–66 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, C. et al. Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Nat. Commun. 9, 4547 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Xu, L. & Jiang, H. Writing and reading histone H3 lysine 9 methylation in Arabidopsis. Front. Plant Sci. 11, 452 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Harris, C. J. & Jacobsen, S. E. ADCP1: a novel plant H3K9me2 reader. Cell Res. 29, 6–7 (2019).

    Article  PubMed  Google Scholar 

  45. Bizhanova, A. & Kaufman, P. D. Close to the edge: heterochromatin at the nucleolar and nuclear peripheries. Biochim. Biophys. Acta Gene Regul. Mech. 1864, 194666 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Padeken, J. & Heun, P. Nucleolus and nuclear periphery: velcro for heterochromatin. Curr. Opin. Cell Biol. 28, 54–60 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Cheng, S. et al. The Tarenaya hassleriana genome provides insight into reproductive trait and genome evolution of crucifers. Plant Cell 25, 2813–2830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Launholt, D., Merkle, T., Houben, A., Schulz, A. & Grasser, K. D. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. Plant Cell 18, 2904–2918 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao, B., Xi, Y. P., Kim, J. Y. & Sung, S. B. Chromatin architectural proteins regulate flowering time by precluding gene looping. Sci. Adv. 7, abg3097 (2021).

    Article  Google Scholar 

  50. Kotlinski, M. et al. Phylogeny-based systematization of Arabidopsis proteins with histone H1 globular ___domain. Plant Physiol. 174, 27–34 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peng, S. et al. Phase separation at the nanoscale quantified by dcFCCS. Proc. Natl Acad. Sci. USA 117, 27124–27131 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fang, X. et al. Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes. Nature 569, 265–269 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Velez, G. et al. Evidence supporting a critical contribution of intrinsically disordered regions to the biochemical behavior of full-length human HP1gamma. J. Mol. Model. 22, 12 (2016).

    Article  PubMed  Google Scholar 

  54. Li, C. H. et al. MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature 586, 440–444 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  56. Ozturk, N., Singh, I., Mehta, A., Braun, T. & Barreto, G. HMGA proteins as modulators of chromatin structure during transcriptional activation. Front. Cell Dev. Biol. 2, 5 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kishi, Y., Fujii, Y., Hirabayashi, Y. & Gotoh, Y. HMGA regulates the global chromatin state and neurogenic potential in neocortical precursor cells. Nat. Neurosci. 15, 1127–1133 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Stros, M., Launholt, D. & Grasser, K. D. The HMG-box: a versatile protein ___domain occurring in a wide variety of DNA-binding proteins. Cell. Mol. Life Sci. 64, 2590–2606 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reeves, R. Molecular biology of HMGA proteins: hubs of nuclear function. Gene 277, 63–81 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Narita, M. et al. A novel role for high-mobility group A proteins in cellular senescence and heterochromatin formation. Cell 126, 503–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. McCarthy, R. L. et al. Diverse heterochromatin-associated proteins repress distinct classes of genes and repetitive elements. Nat. Cell Biol. 23, 905–914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jagannathan, M., Cummings, R. & Yamashita, Y. M. A conserved function for pericentromeric satellite DNA. eLife 7, e34122 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fyodorov, D. V., Zhou, B. R., Skoultchi, A. I. & Bai, Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 19, 192–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Crane-Robinson, C. Linker histones: history and current perspectives. Biochim. Biophys. Acta 1859, 431–435 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Stasevich, T. J., Mueller, F., Brown, D. T. & McNally, J. G. Dissecting the binding mechanism of the linker histone in live cells: an integrated FRAP analysis. EMBO J. 29, 1225–1234 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sequeira-Mendes, J. et al. The functional topography of the Arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell 26, 2351–2366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bonev, B. & Cavalli, G. Organization and function of the 3D genome. Nat. Rev. Genet. 17, 661–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Charbonnel, C. et al. The linker histone GH1-HMGA1 is involved in telomere stability and DNA damage repair. Plant Physiol. 177, 311–327 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ahn, J. H. et al. Phase separation drives aberrant chromatin looping and cancer development. Nature 595, 591–595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Boulay, G. et al. Cancer-specific retargeting of BAF complexes by a prion-like ___domain. Cell 171, 163–178.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hosaka, A. & Kakutani, T. Transposable elements, genome evolution and transgenerational epigenetic variation. Curr. Opin. Genet. Dev. 49, 43–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Li, C. et al. FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnol. 11, 92 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Lemoine, F. et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res. 47, W260–W265 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Sun laboratory for valuable discussion; C. Dean, H. Zhang, G. Li, Q. Zhang, Y. Guo and D. Ren for constructive comments on the work; Y. Qi and Z. Fu for assistance with growing plant materials; Q. Chen and X. Yang for sharing CRISPR-Cas9 vectors; L. Yang for guidance in the preparation and transformation of cucumber protoplasts; Y. Lv for help in painting plant models; the Core Facility of the Center of Biomedical Analysis (Tsinghua University) for assistance with mass spectrometry and confocal microscopy analysis; and Y. Li of the Cryo-EM Facility (Tsinghua University) for help in the immuno-TEM samples preparation. This work was supported by grants from the National Natural Science Foundation of China (31822028 and 91940306 to Q.S., 32070651 to W.Z.) and the Ministry of Science and Technology of China (2016YFA0500800 to Q.S.). The Sun Lab is supported by Tsinghua-Peking Center for Life Sciences, and W.Z. is supported by the China Postdoctoral Science Foundation Project (2019M660610) and the postdoctoral fellowship from Tsinghua-Peking Center for Life Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Q.S. and W.Z. conceived the study. Q.S., P.L., H.L., C.C. and W.Z. designed the experiments. L.C. generated the pADCP1::ADCP1-eGFP/FLAG transgenic lines and performed the ADCP1 mass spectrometry analysis. K.L. analysed the TE distribution of plant species and calculated Gini coefficients. L.X. constructed the nucleosomal arrays. C.C. and J.J. quantitatively measured and analysed the ADCP1-HMGA-H3K9me3 puncta formation in vitro. X.L. conducted the protoplast truncated ADCP1 and HMGA Co-IP assays. A.J. performed ITC experiments and predicted the ADCP1-HMGA protein complex structure. W.Z. performed the rest of the experiments. W.Z. and Q.S. wrote the manuscript with input from all authors, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Qianwen Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Fredy Barneche and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Microscopic images of H3K9me2 and H3K27me1 immunostaining in nuclei of different plant species.

Colors indicated the signals of H3K9me2 (green), H3K27me1 (magenta), and DNA stain (DAPI, grey). At least 50 independent nuclei were observed each species, and the representative ones were imaged. Scale bars, 5 μm. The models of corresponding ADCP1 proteins are shown in the right.

Extended Data Fig. 2 Variations of TE distribution and chromocenter formation in plants.

a,b, The distribution of TEs in plant species with (a) and without (b) chromocenters. The green lines indicated the positions of TEs in the presented chromosomes. Blue-lined boxes showed the heterochromatin regions that concentrate the heterochromatic elements in chromocenter-containing species. c, Gini coefficient is calculated by the numbers of TEs in 100kb-windows to represent the differences in distributions of TEs across the chromosome. The species with and without chromocenters are separated by a black dotted line. Error bars denote standard deviation (SD) of chromosomes.

Source data

Extended Data Fig. 3 ADCP1 interacts specifically with HMGA but not with its paralogs.

a, Phylogenetic tree and ___domain architecture of Arabidopsis HMGA proteins. b, The sequence alignment of Arabidopsis HMGA proteins. The N-terminal GH1 ___domain is highlighted in blue, and the four AT-hooks are highlighted in orange. The HMGA peptides found by ADCP1 IP-MS were shown by green boxes. c, The BiFC assays in Arabidopsis show that ADCP1 interacts specifically with HMGA but not with its homologous proteins HMGA1, HMGA2 and HMGA4. Scale bar, 10 μm. d, BiFC assays in Arabidopsis using ___domain truncated ADCP1-YFPn shown in left and full-length HMGA-YFPc. Scale bar, 5 μm. c,d, At least 50 independent cells were observed in each experiment, and the representative ones were imaged. e, Arabidopsis protoplasts were used to co-express MYC-HMGA-GFP with full length or truncated FLAG-ADCP1-mCherry to conduct Co-IP assays. f, The prediction result of ADCP1-HMGA complex using AlphaFold2.

Source data

Extended Data Fig. 4 HMGA promotes ADCP1-depended chromocenter formation.

a, Transient expression of ADCP1-GFP in Col-0 protoplasts. The zoom-in images of the boxed area are shown in Fig. 2h. Scale bar, 5 μm. b, The ___location of ADCP1 in hmga mutant protoplasts. The zoom-in images of the boxed area are shown in Fig. 2i. Scale bar, 5 μm. c, The nucleus of Arabidopsis transgenic plant leaf expressing mCherry-HMGA. Right image is line scans at the position depicted by the white line. Scale bar, 5 μm. d, The nucleus of Arabidopsis transgenic plant root expressing ADCP1-GFP. Right image is line scans at the position depicted by the white line. Scale bar, 5 μm. e, The Arabidopsis mCherry-HMGA and ADCP1-GFP co-transgenic plants showed ADCP1 and HMGA were co-localized in the chromocenters. Right image is line scans at the position depicted by the white line. Scale bar, 5 μm. At least 50 independent nuclei were observed in each line, and the representative ones were imaged.

Source data

Extended Data Fig. 5 HMGA helps ADCP1 to localize in heterochromatic regions.

a, Scatter plots showing the weaken of ADCP1 binding capacity on H3K9me2-marked regions in hmga mutant. b, The classification of ADCP1-targeted TEs in Col-0 and hmga background, the classification of all TEs in TAIR10 annotation is displayed as a control. c, The HMGA binding motifs found by MEME-ChIP analysis. d, H3K9me2 (red), ADCP1 in wild type (green) and hmga (blue), and HMGA (purple) ChIP-seq enrichment along Arabidopsis chromosomes 2-5. e, Snapshots of H3K9me2 (red), ADCP1 in wild type (green) and hmga (blue), and HMGA (purple) ChIP-seq signals on Arabidopsis LTR-TEs sites. ChIP-seq signals are showed as reads per kilobase per million mapped reads (RPKM).

Source data

Extended Data Fig. 6 The phase separation activity of ADCP1 and HMGA.

a,b, In vitro phase separation assay of full-length ADCP1-GFP and mC-HMGA proteins with H3K9me3 NA. The images in panels and show the DAPI (a) and merged (b) signals, respectively. Scale bars, 20 μm. c,d, ADCP1 (c) and HMGA (d) ___domain architecture and predictor of natural disordered regions (PONDR) score for intrinsic disorder regions (IDRs) (black line), >0.5 is considered disordered. e, Full length and truncated ADCP1-GFP and mCherry-HMGA proteins used in phase separation assays. f, The puncta formed by ADCP1-HMGA-H3K9me3 NA were quantitatively measured by Fluorescence Correlation Spectroscopy (FCS) system. FCS curves (left) and fluorescence trajectories (right) of condensates formed by H3K9me NA with ADCP1 and HMGA are shown. g, Hydrodynamic radii calculated from FCS curves shown in Fig. 4g. Error bars denote standard deviation (SD) of replicates.

Source data

Extended Data Fig. 7 The ADCP1-HMGA recognition pair triggers the formation of chromocenter-like condensates in rice and maize protoplasts.

a, BiFC assays using ADCP1 and HMGA homologs from soybean and tobacco in Col-0 protoplasts. Scale bar, 5 μm. b, Schematic diagram of the ADCP1-HMGA pair expression in rice and maize protoplasts. The Arabidopsis, rice and maize plant models were created with BioRender.com. c,d, The distribution change of ADCP1-mCherry, HMGA-GFP, and DAPI signals in the nuclei of rice (c) and maize (d) protoplasts over time. e-g, Transformation of ADCP1 protein alone does not affect the pattern of DAPI staining in the nuclei of tobacco (e), rice (f), or maize (g). The images were taken at 72h after transformation. Scale bar, 5 μm. At least 50 independent nuclei were observed in each experiment, and the representative ones were imaged. h, Relative expression of LTR-TEs in tobacco 84h after co-transformed ADCP1-GFP and mCherry-HMGA. The NbActin3 gene was used as the internal reference. Error bars denote standard deviation (SD) of three replicates. Two-tailed t tests.

Source data

Extended Data Fig. 8 The structure feature of CsaADCP1.

a, Domain predication results of CsaADCP1 from SMART (http://smart.embl-heidelberg.de), and snapshots showed the hidden HMG-like ___domain in CsaADCP1. b, Sequence alignment of the hidden HMG-like ___domain in CsaADCP1 and HMG proteins. The sequences alignment shows HMG-like ___domain in CsaADCP1 protein owns similar structure features with HMG proteins. c, Three examples from tobacco infection assays using AT-hooks-truncated CsaADCP1. Scale bar, 5 μm. d, CRISPR mediated knock out the CsaADCP1 in cucumber to confirm its function in chromocenter formation. The right panels show the enlarged nuclei, and the numbers mean percentage of nuclei that display DAPI distribution patterns as in the figures. Scale bars, 5 μm.

Extended Data Fig. 9 Introduction of AtADCP1 and AtHMGA promotes heterochromatin condensation and TE silencing.

a, Formation of chromocenter-like condensates in the AtADCP1 and AtHMGA co-transgenic plants of tomato. At least 50 independent nuclei were observed, and the representative ones were imaged. Scale bar, 2 μm. Right image shows line scans at the position depicted by white line. b, Nuclei of tomato without transgene as a control. Scale bar, 2 μm. Right image shows line scans at the position depicted by white line. c, Heatmaps of H3K9me2 and AtADCP1 ChIP-seq enrichment around their binding sites. d,e, ChIPseq snapshots show the binding of H3K9me2 and AtADCP1 at LTR-TE regions of tomato transgenic plants. ChIP-seq signals are showed as reads per kilobase per million mapped reads (RPKM). f, Relative expression of ADCP1 targeted TEs in tomato transgenic plants. The SlActin7 gene was used as the internal reference. Error bars denote standard deviation (SD) of three replicates. Two-tailed t tests. g, H3K9me2 immunostaining in nucleus of the AtADCP1 and AtHMGA co-transgenic plants of tobacco. Colors indicated the signals of ADCP1 (green), HMGA (magenta), H3K9me2 (cyan), and DNA stain (DAPI, grey). Scale bar, 2 μm. h, FISH with the Copia481 repeats in nucleus of the AtADCP1 and AtHMGA co-transgenic plants of tobacco. Colors indicated the signals of Copia481 (magenta) and DNA stain (DAPI, grey). Scale bar, 2 μm.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, and Tables 1–4.

Reporting Summary

Supplementary Video 1

FRAP assay of the ADCP1 foci in ADCP1-GFP transgenic plant of wild-type background.

Supplementary Video 2

FRAP assay of the ADCP1 foci in ADCP1-GFP transgenic plant of hmga background.

Supplementary Video 3

FRAP assay of the HMGA foci in mCherry-HMGA transgenic plant of wild-type background.

Supplementary Video 4

FRAP of the ADCP1-HMGA complex foci in BiFC assay.

Source data

Source Data Figs. 2–6 and Extended Data Figs. 2, 4–7 and 9

Summary of all statistical source data.

Source Data Fig. 2

Unprocessed western blots of Fig. 2e.

Source Data Extended Data Fig. 3

Unprocessed western blots of Extended Data Fig. 3e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Cheng, L., Li, K. et al. Evolutional heterochromatin condensation delineates chromocenter formation and retrotransposon silencing in plants. Nat. Plants 10, 1215–1230 (2024). https://doi.org/10.1038/s41477-024-01746-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01746-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing