Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stomatal opening under high temperatures is controlled by the OST1-regulated TOT3–AHA1 module

Abstract

Plants continuously respond to changing environmental conditions to prevent damage and maintain optimal performance. To regulate gas exchange with the environment and to control abiotic stress relief, plants have pores in their leaf epidermis, called stomata. Multiple environmental signals affect the opening and closing of these stomata. High temperatures promote stomatal opening (to cool down), and drought induces stomatal closing (to prevent water loss). Coinciding stress conditions may evoke conflicting stomatal responses, but the cellular mechanisms to resolve these conflicts are unknown. Here we demonstrate that the high-temperature-associated kinase TARGET OF TEMPERATURE 3 directly controls the activity of plasma membrane H+-ATPases to induce stomatal opening. OPEN STOMATA 1, which regulates stomatal closure to prevent water loss during drought stress, directly inactivates TARGET OF TEMPERATURE 3 through phosphorylation. Taken together, this signalling axis harmonizes stomatal opening and closing under high temperatures and/or drought. In the context of global climate change, understanding how different stress signals converge on stomatal regulation allows the development of climate-change-ready crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TOT3 regulates stomatal aperture and conductance under high temperatures in dicot and monocot plants.
Fig. 2: TOT3 phosphorylates AHA1 to regulate stomatal aperture under high temperatures.
Fig. 3: OST1-mediated TOT3 phosphorylation regulates stomatal aperture under high temperatures.
Fig. 4: OST1-mediated phosphorylation of TOT3 affects drought tolerance and leaf temperature under drought.

Similar content being viewed by others

Data availability

The data are available in the supplementary materials. The mass spectrometry proteomics data are available via ProteomeXchange with the identifier PXD044300. Source data are provided with this paper.

References

  1. Zhang, H., Zhu, J., Gong, Z. & Zhu, J.-K. Abiotic stress responses in plants. Nat. Rev. Genet. 23, 104–119 (2022).

    Article  PubMed  Google Scholar 

  2. Zhu, J. K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Waadt, R. et al. Plant hormone regulation of abiotic stress responses. Nat. Rev. Mol. Cell Biol. 23, 680–694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kollist, H. et al. Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci. 24, 25–37 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11, 772–779 (2021).

    Article  Google Scholar 

  6. Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221, 32–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Murata, Y., Mori, I. C. & Munemasa, S. Diverse stomatal signaling and the signal integration mechanism. Annu. Rev. Plant Biol. 66, 369–392 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Hetherington, A. M. & Woodward, F. I. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Melotto, M., Underwood, W. & He, S. Y. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46, 101–122 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blatt, M. R., Jezek, M., Lew, V. L. & Hills, A. What can mechanistic models tell us about guard cells, photosynthesis, and water use efficiency? Trends Plant Sci. 27, 166–179 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Kim, T.-H., Böhmer, M., Hu, H., Nishimura, N. & Schroeder, J. I. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu. Rev. Plant Biol. 61, 561–591 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bevacqua, E., Zappa, G., Lehner, F. & Zscheischler, J. Precipitation trends determine future occurrences of compound hot–dry events. Nat. Clim. Change 12, 350–355 (2022).

    Article  Google Scholar 

  13. Coughlan de Perez, E., Ganapathi, H., Masukwedza, G. I. T., Griffin, T. & Kelder, T. Potential for surprising heat and drought events in wheat-producing regions of USA and China. npj Clim. Atmos. Sci. 6, 56 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mazdiyasni, O. & AghaKouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl Acad. Sci. USA 112, 11484–11489 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203, 32–43 (2014).

    Article  PubMed  Google Scholar 

  17. Xu, X., Fonseca de Lima, C. F., Vu, L. D. & De Smet, I. When drought meets heat—a plant omics perspective. Front. Plant Sci. 14, 1250878 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kholodenko, B. N. & Okada, M. Reengineering protein-phosphorylation switches. Science 373, 25–26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shindo, Y. et al. Conversion of graded phosphorylation into switch-like nuclear translocation via autoregulatory mechanisms in ERK signalling. Nat. Commun. 7, 10485 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dubois, M. & Inzé, D. Plant growth under suboptimal water conditions: early responses and methods to study them. J. Exp. Bot. 71, 1706–1722 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Sussmilch, F. C., Schultz, J., Hedrich, R. & Roelfsema, M. R. G. Acquiring control: the evolution of stomatal signalling pathways. Trends Plant Sci. 24, 342–351 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Hetherington, A. M. Guard cell signaling. Cell 107, 711–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Roelfsema, M. R. G., Hedrich, R. & Geiger, D. Anion channels: master switches of stress responses. Trends Plant Sci. 17, 221–229 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Hauser, F., Waadt, R. & Schroeder, J. I. Evolution of abscisic acid synthesis and signaling mechanisms. Curr. Biol. 21, R346–R355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maheshwari, P., Assmann, S. M. & Albert, R. A guard cell abscisic acid (ABA) network model that captures the stomatal resting state. Front. Physiol. 11, 927 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ueno, K., Kinoshita, T., Inoue, S. I., Emi, T. & Shimazaki, K. I. Biochemical characterization of plasma membrane H+-ATPase activation in guard cell protoplasts of Arabidopsis thaliana in response to blue light. Plant Cell Physiol. 46, 955–963 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Merlot, S. et al. Constitutive activation of a plasma membrane H+-ATPase prevents abscisic acid-mediated stomatal closure. EMBO J. 26, 3216–3226 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toh, S. et al. Overexpression of plasma membrane H+-ATPase in guard cells enhances light-induced stomatal opening, photosynthesis, and plant growth in hybrid aspen. Front. Plant Sci. 12, 766037 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hayashi, M., Inoue, S., Takahashi, K. & Kinoshita, T. Immunohistochemical detection of blue light-induced phosphorylation of the plasma membrane H+-ATPase in stomatal guard cells. Plant Cell Physiol. 52, 1238–1248 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Fuglsang, A. T. et al. Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr946-Thr-Val and requires phosphorylation of Thr947. J. Biol. Chem. 274, 36774–36780 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Svennelid, F. et al. Phosphorylation of Thr-948 at the C terminus of the plasma membrane H+-ATPase creates a binding site for the regulatory 14-3-3 protein. Plant Cell 11, 2379–2391 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Falhof, J., Pedersen, J. T., Fuglsang, A. T. & Palmgren, M. Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol. Plant 9, 323–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Hayashi, Y. et al. Phosphorylation of plasma membrane H+-ATPase Thr881 participates in light-induced stomatal opening. Nat. Commun. 15, 1194 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miao, R., Russinova, E. & Rodriguez, P. L. Tripartite hormonal regulation of plasma membrane H+-ATPase activity. Trends Plant Sci. 27, 588–600 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Kinoshita, T. Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 18, 5548–5558 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Belin, C. et al. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 141, 1316–1327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mustilli, A.-C., Merlot, S., Vavasseur, A., Fenzi, F. & Giraudat, J. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089–3099 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rizhsky, L. et al. When defense pathways collide: the response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134, 1683–1696 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sinha, R. et al. Differential regulation of flower transpiration during abiotic stress in annual plants. New Phytol. 235, 611–629 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Crawford, A. J., McLachlan, D. H., Hetherington, A. M. & Franklin, K. A. High temperature exposure increases plant cooling capacity. Curr. Biol. 22, R396–R397 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Kostaki, K.-I. I. et al. Guard cells integrate light and temperature signals to control stomatal aperture. Plant Physiol. 182, 1404–1419 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gommers, C. Keep cool and open up: temperature-induced stomatal opening. Plant Physiol. 182, 1188–1189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Takemiya, A. et al. Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat. Commun. 4, 2094 (2013).

    Article  PubMed  Google Scholar 

  44. Fuji, S. et al. Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory ___domain of plasma membrane H+-ATPase. Nat. Commun. 15, 1195 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vu, L. D. et al. The membrane-localized protein kinase MAP4K4/TOT3 regulates thermomorphogenesis. Nat. Commun. 12, 2842 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Hõrak, H., Fountain, L., Dunn, J. A., Landymore, J. & Gray, J. E. Leaf temperature responses to ABA and dead bacteria in wheat and Arabidopsis. Plant Signal. Behav. 16, 1899471 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Munemasa, S. et al. Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr. Opin. Plant Biol. 28, 154–162 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Urban, J., Ingwers, M., McGuire, M. A. & Teskey, R. O. Stomatal conductance increases with rising temperature. Plant Signal. Behav. 12, e1356534 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Urban, J., Ingwers, M. W., McGuire, M. A. & Teskey, R. O. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides × nigra. J. Exp. Bot. 68, 1757–1767 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin, W. et al. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 599, 278–282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kavi Kishor, P. B., Tiozon, R. N., Fernie, A. R. & Sreenivasulu, N. Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends Plant Sci. 27, 1283–1295 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Raghavendra, A. S., Gonugunta, V. K., Christmann, A. & Grill, E. ABA perception and signalling. Trends Plant Sci. 15, 395–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Takahashi, Y. et al. MAP3Kinase-dependent SnRK2-kinase activation is required for abscisic acid signal transduction and rapid osmotic stress response. Nat. Commun. 11, 12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Waadt, R. et al. Identification of Open Stomata1-interacting proteins reveals interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with type 2A protein phosphatases that function in abscisic acid responses. Plant Physiol. 169, 760–779 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vu, L. D. et al. Developmental plasticity at high temperature. Plant Physiol. 181, 399–411 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. O’sullivan, O. S. et al. Thermal limits of leaf metabolism across biomes. Glob. Change Biol. 23, 209–223 (2017).

    Article  Google Scholar 

  58. Li, L. et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 599, 273–277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B. & Sussman, M. R. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408–411 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Merilo, E. et al. Abscisic acid transport and homeostasis in the context of stomatal regulation. Mol. Plant 8, 1321–1333 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Schroeder, J. I., Kwak, J. M. & Allen, G. J. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410, 327–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Devireddy, A. R., Arbogast, J. & Mittler, R. Coordinated and rapid whole‐plant systemic stomatal responses. New Phytol. 225, 21–25 (2020).

    Article  PubMed  Google Scholar 

  63. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jinn, T.-L. Using silicon polymer impression technique and scanning electron microscopy to measure stomatal apertures. Bio Protoc. 7, e2449 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Huang, Y.-C. et al. PECTIN METHYLESTERASE34 contributes to heat tolerance through its role in promoting stomatal movement. Plant Physiol. 174, 748–763 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Scarpeci, T., Zanor, M. & Valle, E. Estimation of stomatal aperture in Arabidopsis thaliana using silicone rubber imprints. Bio Protoc. 7, e2347 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hiyama, A. et al. Blue light and CO2 signals converge to regulate light-induced stomatal opening. Nat. Commun. 8, 1284 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang, P. et al. Mapping proteome-wide targets of protein kinases in plant stress responses. Proc. Natl Acad. Sci. USA 117, 3270–3280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Vanhaeren, H. et al. UBP12 and UBP13 negatively regulate the activity of the ubiquitin-dependent peptidases DA1, DAR1 and DAR2. eLife 9, e52276 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pizzio, G., Regmi, K. & Gaxiola, R. Rhizosphere acidification assay. Bio Protoc. 5, e1676 (2015).

    Article  Google Scholar 

  72. Pizzio, G. A. et al. Arabidopsis type I proton-pumping pyrophosphatase expresses strongly in phloem, where it is required for pyrophosphate metabolism and photosynthate partitioning. Plant Physiol. 167, 1541–1553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Abas, L. et al. Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat. Cell Biol. 8, 249–256 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, Y. et al. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. Proc. Natl Acad. Sci. USA 111, 533–538 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Hayashi, Y., Takahashi, K., Inoue, S. I. & Kinoshita, T. Abscisic acid suppresses hypocotyl elongation by dephosphorylating plasma membrane H+-ATPase in Arabidopsis thaliana. Plant Cell Physiol. 55, 845–853 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Grefen, C. & Blatt, M. R. A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques 53, 311–314 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Mehlhorn, D. G., Wallmeroth, N., Berendzen, K. W. & Grefen, C. 2in1 vectors improve in planta BiFC and FRET analyses. Methods Mol. Biol. 1691, 139–158 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Lu, Q. et al. Proteome-wide cellular thermal shift assay reveals unexpected cross-talk between brassinosteroid and auxin signaling. Proc. Natl Acad. Sci. USA 119, e2118220119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Obrdlik, P. et al. K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proc. Natl Acad. Sci. USA 101, 12242–12247 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu, X., Gevaert, K., De Smet, I. & Vu, L. D. Targeted profiling of protein phosphorylation in plants. Methods Mol. Biol. 2718, 167–179 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Cos, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  Google Scholar 

  82. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  83. GraphPad Prism v. 9.5.1 (GraphPad Software, 2023).

Download references

Acknowledgements

We thank D. Van Damme and B. De Rybel for critical comments on the manuscript. We thank E. Farmer for providing the ost2-2D seeds, M. B. Palmgren for the aha1-6 seeds and the Eurasian Arabidopsis Stock Centre for providing various seeds. This work was supported by MCIN/AEI/10.13039/501100011033 grant no. PID2020-113100RB (to P.L.R.), Graduate School Green Top Sectors grant no. GSGT.2018.007 of the Netherlands Organization for Scientific Research (to M.P. and M.v.Z.), UGent BOF postdoctoral mandate no. 01P12219 (to L.D.V.), UGent BOF doctoral mandate no. 01CD7122 (to X.X.), China Scholarship Council grant no. 201708340063 (to R.W.), China Scholarship Council grant no. 201706350153 (to X.X.), China Scholarship Council grant no. 201806170025 (to Z.J.) and China Scholarship Council grant no. 202204910025 (to H.L.).

Author information

Authors and Affiliations

Authors

Contributions

I.D.S. and L.D.V. conceptualized the project. P.L.R., M.P., M.v.Z., L.D.V., Z.J. and X.X. acquired the funding. X.X., H.L., L.D.V., M.P., N.L., B.V.D.C., G.A.P., Z.J., R.W., S.M.D. and S.L.Y.V. conducted the investigation. I.D.S., L.D.V., K.G., M.v.Z., P.L.R., H.N. and S.V. supervised the project. T.K. provided tools for the research. X.X., L.D.V. and I.D.S. visualized the data. X.X., I.D.S. and L.D.V. wrote the original draft of the paper. X.X., M.P., Z.J., K.G., N.L., P.L.R., M.v.Z., S.M.D., S.V., H.N., L.D.V. and I.D.S. reviewed and edited the paper.

Corresponding author

Correspondence to Ive De Smet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Maija Sierla and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29, Methods, uncropped images and references.

Reporting Summary

Supplementary Data

Statistical source data for the supplementary figures.

Supplementary Table 1

List of identified phosphosites and protein of AHA1 from tobacco infiltration IP–mass spectrometry.

Supplementary Table 2

List of identified phosphosites and protein of TOT3 from tobacco infiltration IP–mass spectrometry.

Supplementary Table 3

List of identified phosphosites and proteins from GFP–TOT3 IP–mass spectrometry data in Arabidopsis exposed to high temperatures or ABA.

Supplementary Table 4

List of identified phosphosites of TOT3 from phosphoprofiling of Arabidopsis seedlings treated with progressing drought stress (our data) or mannitol.

Supplementary Table 5

Primers used in this study.

Supplementary Table 6

Plasmids generated and used in this study.

Source data

Source Data Figs. 1–4

Statistical source data.

Source Data Figs. 2 and 3

Unprocessed western blots and/or gels.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Liu, H., Praat, M. et al. Stomatal opening under high temperatures is controlled by the OST1-regulated TOT3–AHA1 module. Nat. Plants 11, 105–117 (2025). https://doi.org/10.1038/s41477-024-01859-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01859-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing