Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Convergent reduction of immune receptor repertoires during plant adaptation to diverse special lifestyles and habitats

Abstract

Plants deploy cell-surface pattern recognition receptors (PRRs) and intracellular nucleotide-binding site–leucine-rich repeat receptors (NLRs) to recognize pathogens. However, how plant immune receptor repertoires evolve in responding to changed pathogen burdens remains elusive. Here we reveal the convergent reduction of NLR repertoires in plants with diverse special lifestyles/habitats (SLHs) encountering low pathogen burdens. Furthermore, a parallel but milder reduction of PRR genes in SLH species was observed. The reduction of PRR and NLR genes was attributed to both increased gene loss and decreased gene duplication. Notably, pronounced loss of immune receptors was associated with the complete absence of signalling components from the enhanced disease susceptibility 1 (EDS1) and the resistance to powdery mildew 8 (RPW8)-NLR (RNL) families. In addition, evolutionary pattern analysis suggested that the conserved toll/interleukin-1 receptor (TIR)-only proteins might function tightly with EDS1/RNL. Taken together, these results reveal the hierarchically adaptive evolution of the two-tiered immune receptor repertoires during plant adaptation to diverse SLHs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and classification of immune receptor genes across 808 angiosperm genomes.
Fig. 2: Concerted contraction of NLR gene number among SLH species.
Fig. 3: Concerted contraction of the LRR-RLK XII and LRR-RLPID+4LRR genes among SLH species.
Fig. 4: Evolutionary patterns of immune pathway signalling components.
Fig. 5: Presence/absence mode of immune signalling candidates in species lacking EDS1 family genes.
Fig. 6: Schematic diagram illustrating the hierarchically adaptive evolution of two-tiered immune receptor genes during diverse ecological specialization.

Similar content being viewed by others

Data availability

With reference to PlaBI (https://www.plabipd.de/pubplant_cladogram1.html), we collected accessions of sequenced plant genomes that have been published in peer-reviewed journals. Accordingly, the annotated proteomes of 808 angiosperm genomes were downloaded from publicly available databases, such as NCBI (https://www.ncbi.nlm.nih.gov/assembly/), NGDC (https://ngdc.cncb.ac.cn/gwh/), CNGBdb (https://db.cngb.org/), Phytozome (https://phytozome-next.jgi.doe.gov/), CoGe (https://genomevolution.org/coge/), GigaDB (http://gigadb.org/), Ensembl Plants (http://plants.ensembl.org/index.html) and Plant GARDEN (https://plantgarden.jp/en/index). The complete list of species taxa, references and download links is curated in Supplementary Table 1. The information on the sequencing, assembly and annotation of each genome retrieved from the N3 database (http://ibi.zju.edu.cn/N3database/)96, original publications and deposited databases is also curated in Supplementary Table 1. The protein sequences of the PRR, NLR, EDS1, cTIR, TNP and MLKL genes from 808 angiosperms that were identified and classified in this study have been deposited in AirDB (https://efg.nju.edu.cn/AirDB/). Source data are provided with this paper.

References

  1. Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    CAS  PubMed  Google Scholar 

  2. Jones, J. D. G., Staskawicz, B. J. & Dangl, J. L. The plant immune system: from discovery to deployment. Cell 187, 2095–2116 (2024).

    CAS  PubMed  Google Scholar 

  3. Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105–109 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ngou, B. P. M., Ahn, H. K., Ding, P. & Jones, J. D. G. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592, 110–115 (2021).

    CAS  PubMed  Google Scholar 

  5. Pruitt, R. N. et al. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598, 495–499 (2021).

    CAS  PubMed  Google Scholar 

  6. Tian, H. et al. Activation of TIR signalling boosts pattern-triggered immunity. Nature 598, 500–503 (2021).

    CAS  PubMed  Google Scholar 

  7. Tang, D., Wang, G. & Zhou, J. M. Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29, 618–637 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. DeFalco, T. A. & Zipfel, C. Molecular mechanisms of early plant pattern-triggered immune signaling. Mol. Cell 81, 3449–3467 (2021).

    CAS  PubMed  Google Scholar 

  9. Lehti-Shiu, M. D. & Shiu, S. H. Diversity, classification and function of the plant protein kinase superfamily. Phil. Trans. R. Soc. Lond. B 367, 2619–2639 (2012).

    CAS  Google Scholar 

  10. Dievart, A., Gottin, C., Perin, C., Ranwez, V. & Chantret, N. Origin and diversity of plant receptor-like kinases. Annu. Rev. Plant Biol. 71, 131–156 (2020).

    CAS  PubMed  Google Scholar 

  11. Man, J., Harrington, T. A., Lally, K. & Bartlett, M. E. Asymmetric evolution of protein domains in the leucine-rich repeat receptor-like kinase family of plant signaling proteins. Mol. Biol. Evol. 40, msad220 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ngou, B. P. M., Ding, P. & Jones, J. D. G. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34, 1447–1478 (2022).

    PubMed  PubMed Central  Google Scholar 

  13. Ngou, B. P. M., Heal, R., Wyler, M., Schmid, M. W. & Jones, J. D. G. Concerted expansion and contraction of immune receptor gene repertoires in plant genomes. Nat. Plants 8, 1146–1152 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ngou, B. P. M., Wyler, M., Schmid, M. W., Kadota, Y. & Shirasu, K. Evolutionary trajectory of pattern recognition receptors in plants. Nat. Commun. 15, 308 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, Y., Zhang, Y. M., Tang, Y., Chen, J. Q. & Shao, Z. Q. The evolution of plant NLR immune receptors and downstream signal components. Curr. Opin. Plant Biol. 73, 102363 (2023).

    CAS  PubMed  Google Scholar 

  16. Shao, Z. Q. et al. Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol. 170, 2095–2109 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kourelis, J. & van der Hoorn, R. A. L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30, 285–299 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bonardi, V. et al. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc. Natl Acad. Sci. USA 108, 16463–16468 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Castel, B. et al. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol. 222, 966–980 (2019).

    CAS  PubMed  Google Scholar 

  20. Wu, Z. et al. Differential regulation of TNL-mediated immune signaling by redundant helper CNLs. New Phytol. 222, 938–953 (2019).

    CAS  PubMed  Google Scholar 

  21. Saile, S. C. et al. Two unequally redundant ‘helper’ immune receptor families mediate Arabidopsis thaliana intracellular ‘sensor’ immune receptor functions. PLoS Biol. 18, e3000783 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, J. et al. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364, eaav5868 (2019).

    CAS  PubMed  Google Scholar 

  23. Wang, J. et al. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870 (2019).

    CAS  PubMed  Google Scholar 

  24. Bi, G. et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528–3541.e12 (2021).

    CAS  PubMed  Google Scholar 

  25. Forderer, A. et al. A wheat resistosome defines common principles of immune receptor channels. Nature 610, 532–539 (2022).

    PubMed  PubMed Central  Google Scholar 

  26. Jacob, P. et al. Plant ‘helper’ immune receptors are Ca2+-permeable nonselective cation channels. Science 373, 420–425 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, C. H. et al. NLR network mediates immunity to diverse plant pathogens. Proc. Natl Acad. Sci. USA 114, 8113–8118 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Adachi, H. et al. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8, e49956 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. Ma, S. et al. Oligomerization-mediated autoinhibition and cofactor binding of a plant NLR. Nature 632, 869–876 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lapin, D. et al. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-___domain immune receptors. Plant Cell 31, 2430–2455 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lapin, D., Bhandari, D. D. & Parker, J. E. Origins and immunity networking functions of EDS1 family proteins. Annu. Rev. Phytopathol. 58, 253–276 (2020).

    CAS  PubMed  Google Scholar 

  32. Sun, X. et al. Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity. Nat. Commun. 12, 3335 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma, S. et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370, eabe3069 (2020).

    CAS  PubMed  Google Scholar 

  34. Martin, R. et al. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370, eabd9993 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jia, A. et al. TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for plant immunity. Science 377, eabq8180 (2022).

    CAS  PubMed  Google Scholar 

  36. Huang, S. et al. Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science 377, eabq3297 (2022).

    CAS  PubMed  Google Scholar 

  37. Shao, Z. Q., Xue, J. Y., Wang, Q., Wang, B. & Chen, J. Q. Revisiting the origin of plant NBS-LRR genes. Trends Plant Sci. 24, 9–12 (2019).

    CAS  PubMed  Google Scholar 

  38. Feng, X. Y., Li, Q., Liu, Y., Zhang, Y. M. & Shao, Z. Q. Evolutionary and immune-activating character analyses of NLR genes in algae suggest the ancient origin of plant intracellular immune receptors. Plant J. 119, 2316–2330 (2024).

    CAS  PubMed  Google Scholar 

  39. Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M. & Bergelson, J. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 74–77 (2003).

    CAS  PubMed  Google Scholar 

  40. Liu, Y. et al. An angiosperm NLR Atlas reveals that NLR gene reduction is associated with ecological specialization and signal transduction component deletion. Mol. Plant 14, 2015–2031 (2021).

    CAS  PubMed  Google Scholar 

  41. Baggs, E. L. et al. Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals coevolved components of plant immunity and drought response. Plant Cell 32, 2158–2177 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, J., Tan, S. J., Zhang, L., Li, P. & Tian, D. C. Co-variation among major classes of LRR-encoding genes in two pairs of plant species. J. Mol. Evol. 72, 498–509 (2011).

    CAS  PubMed  Google Scholar 

  43. Li, P. et al. RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics 17, 852 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yin, Z., Liu, J. & Dou, D. RLKdb: a comprehensively curated database of plant receptor-like kinase families. Mol. Plant 17, 513–515 (2024).

    CAS  PubMed  Google Scholar 

  45. Dufayard, J. F. et al. New insights on leucine-rich repeats receptor-like kinase orthologous relationships in angiosperms. Front. Plant Sci. 8, 381 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. Kourelis, J., Sakai, T., Adachi, H. & Kamoun, S. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biol. 19, e3001124 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Qin, H., Cheng, J., Han, G.-Z. & Gong, Z. Phylogenomic insights into the diversity and evolution of RPW8-NLRs and their partners in plants. Plant J. 120, 1032–1046 (2024).

    CAS  PubMed  Google Scholar 

  48. Sudalaimuthuasari, N. et al. The genome of the mimosoid legume Prosopis cineraria, a desert tree. Int. J. Mol. Sci. 23, 8503 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kong, W. et al. Genome and evolution of Prosopis alba Griseb., a drought and salinity tolerant tree legume crop for arid climates. Plants People Planet 5, 933–947 (2023).

    Google Scholar 

  50. Wang, M., Zhang, L., Tong, S., Jiang, D. & Fu, Z. Chromosome-level genome assembly of a xerophytic plant, Haloxylon ammodendron. DNA Res. 29, dsac006 (2022).

    PubMed  PubMed Central  Google Scholar 

  51. Lapin, D., Johanndrees, O., Wu, Z. S., Li, X. & Parker, J. E. Molecular innovations in plant TIR-based immunity signaling. Plant Cell 34, 1479–1496 (2022).

    PubMed  PubMed Central  Google Scholar 

  52. Johanndrees, O. et al. Variation in plant toll/interleukin-1 receptor ___domain protein dependence on ENHANCED DISEASE SUSCEPTIBILITY 1. Plant Physiol. 191, 626–642 (2023).

    CAS  PubMed  Google Scholar 

  53. Ogden, S. C., Nishimura, M. T. & Lapin, D. Functional diversity of toll/interleukin-1 receptor domains in flowering plants and its translational potential. Curr. Opin. Plant Biol. 76, 102481 (2023).

    CAS  PubMed  Google Scholar 

  54. Meyers, B. C., Morgante, M. & Michelmore, R. W. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J. 32, 77–92 (2002).

    CAS  PubMed  Google Scholar 

  55. Nandety, R. S. et al. The role of TIR-NBS and TIR-X proteins in plant basal defense responses. Plant Physiol. 162, 1459–1472 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, Y.-M. et al. Divergence and conservative evolution of XTNX genes in land plants. Front. Plant Sci. 8, 1844 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Mahdi, L. K. et al. Discovery of a family of mixed lineage kinase ___domain-like proteins in plants and their role in innate immune signaling. Cell Host Microbe 28, 813–824.e6 (2020).

    CAS  PubMed  Google Scholar 

  58. Shen, Q. et al. Cytoplasmic calcium influx mediated by plant MLKLs confers TNL-triggered immunity. Cell Host Microbe 32, 453–465.e6 (2024).

    CAS  PubMed  Google Scholar 

  59. Li, H. et al. Wheat powdery mildew resistance gene Pm13 encodes a mixed lineage kinase ___domain-like protein. Nat. Commun. 15, 2449 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. LEAKE, J. R. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol. 127, 171–216 (1994).

    PubMed  Google Scholar 

  61. Merckx, V. S. F. T. et al. Mycoheterotrophy in the wood-wide web. Nat. Plants 10, 710–718 (2024).

    PubMed  Google Scholar 

  62. Xu, Y. et al. A chromosome-scale Gastrodia elata genome and large-scale comparative genomic analysis indicate convergent evolution by gene loss in mycoheterotrophic and parasitic plants. Plant J. 108, 1609–1623 (2021).

    CAS  PubMed  Google Scholar 

  63. Li, M.-H. et al. Genomes of leafy and leafless Platanthera orchids illuminate the evolution of mycoheterotrophy. Nat. Plants 8, 373–388 (2022).

    PubMed  PubMed Central  Google Scholar 

  64. Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 5350 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kahlon, P. S. et al. Population studies of the wild tomato species Solanum chilense reveal geographically structured major gene-mediated pathogen resistance. Proc. R. Soc. B 287, 20202723 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Castel, B., El Mahboubi, K., Jacquet, C. & Delaux, P. M. Immunobiodiversity: conserved and specific immunity across land plants and beyond. Mol. Plant 17, 92–111 (2024).

    CAS  PubMed  Google Scholar 

  68. Zhuang, H. et al. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. New Phytol. 218, 1586–1596 (2018).

    CAS  PubMed  Google Scholar 

  69. Hadariová, L., Vesteg, M., Hampl, V. & Krajcovic, J. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr. Genet. 64, 365–387 (2018).

    PubMed  Google Scholar 

  70. Liu, J. et al. Chloroplast immunity: a cornerstone of plant defense. Mol. Plant 17, 686–688 (2024).

    CAS  PubMed  Google Scholar 

  71. Boller, T. & Felix, G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379–406 (2009).

    CAS  PubMed  Google Scholar 

  72. Shimizu, M. et al. A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proc. Natl Acad. Sci. USA 119, e2116896119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wu Y. et al. A canonical protein complex controls immune homeostasis and multipathogen resistance. Science 386, 1405–1412 (2024).

  74. The Angiosperm Phylogeny Group et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 10.1111/boj.12385 (2016).

  75. Jin, Y. & Qian, H. V.PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Divers. 44, 335–339 (2022).

    PubMed  PubMed Central  Google Scholar 

  76. Li, C. et al. Ancient DNA analysis of Panicum miliaceum (broomcorn millet) from a Bronze Age cemetery in Xinjiang, China. Veg. Hist. Archaeobot. 25, 469–477 (2016).

    Google Scholar 

  77. Yang, W. et al. The draft genome sequence of a desert tree Populus pruinosa. GigaScience 6, gix075 (2017).

    Google Scholar 

  78. Delgado-Salinas, A., Bibler, R. & Lavin, M. Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst. Bot. 31, 779–791 (2006).

    Google Scholar 

  79. Messeder, J. V. S. et al. A highly resolved nuclear phylogeny uncovers strong phylogenetic conservatism and correlated evolution of fruit color and size in Solanum L. New Phytol. 243, 765–780 (2024).

    CAS  PubMed  Google Scholar 

  80. Xu, S. et al. Ggtree: a serialized data object for visualization of a phylogenetic tree and annotation data. iMeta 1, e56 (2022).

    PubMed  PubMed Central  Google Scholar 

  81. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS  PubMed  Google Scholar 

  82. Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fritz-Laylin, L. K., Krishnamurthy, N., Tör, M., Sjölander, K. V. & Jones, J. D. G. Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol. 138, 611–623 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Chen, T. Identification and characterization of the LRR repeats in plant LRR-RLKs. BMC Mol. Cell Biol. 22, 9 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nucleic Acids Res. 43, W39–W49 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Anisimova, M., Gil, M., Dufayard, J. F., Dessimoz, C. & Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 60, 685–699 (2011).

    PubMed  PubMed Central  Google Scholar 

  91. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    CAS  PubMed  Google Scholar 

  92. Darby, C. A., Stolzer, M., Ropp, P. J., Barker, D. & Durand, D. Xenolog classification. Bioinformatics 33, 640–649 (2017).

    CAS  PubMed  Google Scholar 

  93. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  PubMed  Google Scholar 

  95. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Xie, L. et al. Technology-enabled great leap in deciphering plant genomes. Nat. Plants 10, 551–566 (2024).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32270241 and 32070243 to Z.-Q.S., 32170218 to J.-Q.C., and 32172089 to Y.-M.Z.), the NSFC-FDCT Grant (32461160254 to J.-Q.C.), the Jiangsu Agricultural Science and Technology Independent Innovation Fund (CX(23)3116 to Z.-Q.S.), and the National Postdoctoral Science Foundation of China (2022M721558 and 2024T170408 to Y.L.). Y.L. was supported by the Jiangsu Excellent Postdoctoral Funding (2022ZB45), and Z.-Q.S. was supported by the Outstanding Young Teacher of ‘QingLan Project’ of Jiangsu Province. We thank W.-L. Wu for providing the cartoon elements in Fig. 6.

Author information

Authors and Affiliations

Authors

Contributions

Z.-Q.S. and J.-Q.C. conceived and designed the research. S.-X.L., Y.L. and Y.-M.Z. obtained and analysed the data. S.-X.L. and Z.-Q.S. interpreted the data. S.-X.L. constructed the database. S.-X.L. drafted the manuscript. Z.-Q.S. and J.-Q.C. revised the manuscript.

Corresponding authors

Correspondence to Jian-Qun Chen or Zhu-Qing Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Martin Parniske, Baptiste Castel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of PRR gene numbers identified in this study with previous publications.

a Comparison of IR-RLK gene number in this study with all RLK gene number in Li et al. (RGAugury)43 for the corresponding species. b Comparison of LRR-RLK gene number in this study with LRR-RLK gene number in Yin et al. (HMMER, deepTMHMM)44 for the corresponding species. c Comparison of LRR-RLK XII gene number in this study with LRR-RLK XII gene number in Dufayard et al. (HMMER, TMHMM, TopPred)45 for the corresponding species. d Comparison of IR-RLP gene number in this study with all RLP gene number in Li et al. (RGAugury)43 for the corresponding species. Each scatter plot contains the linear regression trend (solid line), 95% confidence interval (dark gray shade), 95% prediction interval (light gray shade), and Pearson's correlation coefficient with two-sided test. Two-sided Wilcoxon matched-pairs signed-ranks tests were conducted for boxplots (centre line: median; box limits: upper and lower quartiles; whiskers: 1.5x interquartile range).

Extended Data Fig. 2 Comparison of NLR gene numbers identified in this study with previous publications.

a Comparison of NLR gene number in this study with the NLR gene number in Li et al. (RGAugury)43 for the corresponding species. b Comparison of NLR gene number in this study with NLR gene number in Baggs et al. (NLR-Annotator)41 for the corresponding species. c Comparison of NLR gene number in this study with NLR gene number in Krourelis et al. (NLRtracker)46 for the corresponding species. d Comparison of NLR gene number in this study with NLR gene number in Qin et al. (HMMER, MAFFT, Fasttree)47 for the corresponding species. Each scatter plot contains the linear regression trend (solid line), 95% confidence interval (dark gray shade), 95% prediction interval (light gray shade), and Pearson's correlation coefficient with two-sided test. Two-sided Wilcoxon matched-pairs signed-ranks tests were conducted for boxplots (centre line: median; box limits: upper and lower quartiles; whiskers: 1.5x interquartile range).

Extended Data Fig. 3 Correlations between genome size, CDS number, and immune receptor gene number.

The diagonal boxes include histograms representing the distributions of genome sizes (Mb), CDS numbers, and gene numbers of NLR, LRR-RLK XII, and LRR-RLPID+4LRR from 808 angiosperms, respectively. The bottom left boxes contain the scatter plots between genome sizes, CDS numbers, and immune receptor gene numbers from 808 angiosperms, with the solid lines representing the linear trends and the light blue shades representing 95% confidence intervals. The top right boxes provide the corresponding values of the Pearson correlation coefficient (Pearson’s r) with two-sided statistical test (***: P < 0.001).

Source data

Extended Data Fig. 4 Evaluation of the impact of genome quality and species domestication on NLR comparison.

a NLR gene number in SLH and non-SLH species under similar metrics of genome sequencing [third-generation sequencing (TGS), next-generation sequencing (NGS), and Sanger], assembly [chromosome-level and non-chromosome-level; contig N50 size (the length of the shortest contig at 50% of the total assembly length)], and annotation [benchmarking universal single-copy orthologs (BUSCO)]. The distribution of NLR gene numbers is represented by the boxplot (centre line: median; box limits: upper and lower quartiles; whiskers: 1.5x interquartile range; outliers not shown). The SLH species and non-SLH species are indicated in salmon and blue, respectively. Pairwise significance was determined by two-sided Mann‒Whitney U test between SLH and non-SLH angiosperms (****: P < 0.0001). Species lacking the information of genome quality (for example contig N50) were not included in this analysis. b NLR gene number in SLH, wild, and domesticated species. The distribution of NLR gene numbers is represented by the boxplot (centre line: median; box limits: upper and lower quartiles; whiskers: 1.5x interquartile range; outliers not shown). Pairwise significance was determined by two-sided Mann‒Whitney U test between SLH and non-SLH angiosperms, respectively (ns: P > 0.05; ****: P < 0.0001).

Source data

Extended Data Fig. 5 Comparison of NLR gene number between SLH and non-SLH species within the same family.

The phylogenetic tree of SLH species within each family is extracted from Supplementary Fig. 1. Clades of Orchidaceae (n = 10), Poaceae (n = 85), Salicaceae (n = 14), Fabaceae (n = 51), Brassicaceae (n = 44), Amaranthaceae (n = 12), and Solanaceae (n = 45) are indicated in alternate color stripes superimposed on the species tree. The NLR gene number is represented by the bar plot, with SLH species indicated in color as Fig. 2a and the average of non-SLH species in each family indicated in gray. Pairwise significance was determined by two-sided one sample Wilcoxon signed-rank test between each SLH plant and its non-SLH relatives within the same family, respectively (ns: P > 0.05; *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001).

Source data

Extended Data Fig. 6 Evaluation of the impact of genome quality and species domestication on LRR-RLK XII and LRR-RLPID+4LRR comparison.

a LRR-RLK XII and LRR-RLPID+4LRR gene number in SLH and non-SLH species under similar metrics of genome sequencing [third-generation sequencing (TGS), next-generation sequencing (NGS), and Sanger], assembly [chromosome-level and non-chromosome-level; contig N50 size (the length of the shortest contig at 50% of the total assembly length)], and annotation [benchmarking universal single-copy orthologs (BUSCO)]. The distribution of LRR-RLK XII and LRR-RLPID+4LRR gene numbers is represented by the boxplot (centre line: median; box limits: upper and lower quartiles; whiskers: 1.5x interquartile range; outliers not shown). The SLH species and non-SLH species are indicated in salmon and blue, respectively. Pairwise significance was determined by two-sided Mann‒Whitney U test between SLH and non-SLH angiosperms (***: P < 0.001; ****: P < 0.0001). Species lacking the information of genome quality (for example contig N50) were not included in this analysis. b LRR-RLK XII and LRR-RLPID+4LRR gene number in SLH, wild, and domesticated species. The distribution of LRR-RLK XII and LRR-RLPID+4LRR gene numbers is represented by the boxplot (centre line: median; box limits: upper and lower quartiles; whiskers: 1.5x interquartile range; outliers not shown). Pairwise significance was determined by two-sided Mann‒Whitney U test between SLH and non-SLH angiosperms, respectively (ns: P > 0.05; ****: P < 0.0001).

Source data

Extended Data Fig. 7 Comparison of LRR-RLK XII and LRR-RLPID+4LRR gene number between SLH and non-SLH species within the same family.

The phylogenetic tree of SLH species within each family is extracted from Supplementary Fig. 1. Clades of Orchidaceae (n = 10), Poaceae (n = 85), Salicaceae (n = 14), Fabaceae (n = 51), Brassicaceae (n = 44), Amaranthaceae (n = 12), and Solanaceae (n = 45) are indicated in alternate color stripes superimposed on the species tree. The LRR-RLK XII (a) and LRR-RLPID+4LRR (b) gene number is represented by the bar plot, with SLH species indicated in color as Fig. 3a and the average of non-SLH species in each family indicated in gray. Pairwise significance was determined by two-sided one sample Wilcoxon signed-rank test between each SLH plant and its non-SLH relatives within the same family, respectively (ns: P > 0.05; *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001).

Source data

Extended Data Fig. 8 Distribution of RNL and EDS1 family genes across 808 angiosperms.

The phylogenetic tree of 808 angiosperm species is corresponding to Supplementary Fig. 1. The numbers of RNL (NRG1 and ADR1) and EDS1 family (EDS1, SAG101 and PAD4) genes are represented by the heatmap. The color key is shown at the bottom, with white indicating no detectable gene.

Extended Data Fig. 9 Distribution of cTIR, TNP, and MLKL genes across 808 angiosperms.

The phylogenetic tree of 808 angiosperm species is corresponding to Supplementary Fig. 1. The numbers of cTIR, TNP, and MLKL genes are represented by the heatmap. The color key is shown at the bottom, with white indicating no detectable gene.

Extended Data Fig. 10 Presence/absence mode of PTI and ETI pathway components in species lacking EDS1 family genes.

The presence and absence of the PTI and ETI pathway components are indicated by the solid and open circles, respectively, with the color of the circles reflecting presence of the components of ETI (orange) or PTI (green).

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Supplementary Table

Supplementary Tables 1–10.

Supplementary Data

Supplementary Data 1–3.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SX., Liu, Y., Zhang, YM. et al. Convergent reduction of immune receptor repertoires during plant adaptation to diverse special lifestyles and habitats. Nat. Plants 11, 248–262 (2025). https://doi.org/10.1038/s41477-024-01901-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-024-01901-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing