Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The rapid formation of macromolecules in irradiated ice of protoplanetary disk dust traps

Abstract

Organic macromolecular matter is the dominant carrier of volatile elements such as carbon, nitrogen and noble gases in chondrites—the rocky building blocks from which Earth formed. How this macromolecular substance formed in space is unclear. Here we show that its formation could be associated with the presence of dust traps, which are prominent mechanisms for forming planetesimals in planet-forming disks. We demonstrate the existence of heavily irradiated zones in dust traps, where small frozen molecules that coat large quantities of microscopic dust grains could be rapidly converted into macromolecular matter by receiving radiation doses of up to several tens of electronvolts per molecule per year. This allows for the transformation of simple molecules into complex macromolecular matter within several decades. Up to roughly 4% of the total disk ice reservoir can be processed this way and subsequently incorporated into the protoplanetary disk midplane where planetesimals form. This finding shows that planetesimal formation and the production of organic macromolecular matter, which provides the essential elemental building blocks for life, might be linked.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dust evolution and irradiation model of a protoplanetary disk with a dust trap located at ~45 AU.
Fig. 2: Influence of the opacity on the dose rate and amount of settled processed ice for regions constrained between 10−3, 10−2 and 10−1 times the peak grain photon flux.
Fig. 3: Schematic depiction of the IOM formation scenario.

Similar content being viewed by others

Data availability

The datasets used and generated during this study are available via Zenodo at https://zenodo.org/records/11953364 (ref. 59).

Code availability

The code used for this study is available via Zenodo at https://zenodo.org/records/11953364 (ref. 59).

References

  1. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).

    ADS  Google Scholar 

  2. Alexander, C. M. O. ’D., Cody, G. D., De Gregorio, B. T., Nittler, L. R. & Stroud, R. M. The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Geochemistry 77, 227–256 (2017).

    Google Scholar 

  3. d’Ischia, M. et al. Insoluble organic matter in chondrites: archetypal melanin-like PAH-based multifunctionality at the origin of life? Phys. Life Rev. 37, 65–93 (2021).

    ADS  Google Scholar 

  4. Paquette, J. A. et al. D/H in the refractory organics of comet 67P/Churyumov-Gerasimenko measured by Rosetta/COSIMA. Mon. Not. R. Astron. Soc. 504, 4940–4951 (2021).

    ADS  Google Scholar 

  5. Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    ADS  Google Scholar 

  6. Kissel, J. & Krueger, F. R. The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature 326, 755–760 (1987).

    ADS  Google Scholar 

  7. Hayatsu, R., Matsuoka, S., Scott, R. G., Studier, M. H. & Anders, E. Origin of organic matter in the early solar system—VII. The organic polymer in carbonaceous chondrites. Geochim. Cosmochim. Acta 41, 1325–1339 (1977).

    ADS  Google Scholar 

  8. Cody, G. D. et al. Establishing a molecular relationship between chondritic and cometary organic solids. Proc. Natl Acad. Sci. USA 108, 19171–19176 (2011).

    ADS  Google Scholar 

  9. Robert, F. & Epstein, S. The concentration and isotopic composition of hydrogen, carbon and nitrogen in carbonaceous meteorites. Geochim. Cosmochim. Acta 46, 81–95 (1982).

    ADS  Google Scholar 

  10. Laurent, B. et al. The deuterium/hydrogen distribution in chondritic organic matter attests to early ionizing irradiation. Nat. Commun. 6, 8567 (2015).

    ADS  Google Scholar 

  11. Alexander, C. M. O’D., Boss, A. P., Keller, L. P., Nuth, J. A. & Weinberger, A. Astronomical and meteoritic evidence for the nature of interstellar dust and its processing in protoplanetary disks. in Protostars and Planets V (eds Reipurth, B., Jewitt, D. & Keil, K.) 801–813 (University of Arizona Press, 2007).

  12. Binet, L., Gourier, D., Derenne, S. & Robert, F. Heterogeneous distribution of paramagnetic radicals in insoluble organic matter from the Orgueil and Murchison meteorites. Geochim. Cosmochim. Acta 66, 4177–4186 (2002).

    ADS  Google Scholar 

  13. Alexander, C. M. O. ’D., Nilges, M. J., Cody, G. D. & Herd, C. D. K. Are radicals responsible for the variable deuterium enrichments in chondritic insoluble organic material? Geochim. Cosmochim. Acta https://doi.org/10.1016/j.gca.2021.10.007 (2022).

    Article  Google Scholar 

  14. Laurent, B. et al. Isotopic and structural signature of experimentally irradiated organic matter. Geochim. Cosmochim. Acta 142, 522–534 (2014).

    ADS  Google Scholar 

  15. Ott, U. Planetary and pre-solar noble gases in meteorites. Geochemistry 74, 519–544 (2014).

    Google Scholar 

  16. Strazzulla, G. & Baratta, G. A. Carbonaceous material by ion irradiation in space. Astron. Astrophys. 266, 434–438 (1992).

    ADS  Google Scholar 

  17. Ferini, G., Baratta, G. A. & Palumbo, M. E. A Raman study of ion irradiated icy mixtures. Astron. Astrophys. 414, 757–766 (2004).

    ADS  Google Scholar 

  18. Palumbo, M. E., Ferini, G. & Baratta, G. A. Infrared and Raman spectroscopies of refractory residues left over after ion irradiation of nitrogen-bearing icy mixtures. Adv. Space Res. 33, 49–56 (2004).

    ADS  Google Scholar 

  19. Danger, G. et al. The transition from soluble to insoluble organic matter in interstellar ice analogs and meteorites. Astron. Astrophys. 667, A120 (2022).

    Google Scholar 

  20. Shen, C. J., Greenberg, J. M., Schutte, W. A. & Van Dishoeck, E. F. Cosmic ray induced explosive chemical desorption in dense clouds. Astron. Astrophys. 415, 203–215 (2004).

    ADS  Google Scholar 

  21. Ciesla, F. J. & Sandford, S. A. Organic synthesis via irradiation and warming of ice grains in the solar nebula. Science 336, 452–454 (2012).

    ADS  Google Scholar 

  22. van der Marel, N. et al. A major asymmetric dust trap in a transition disk. Science 340, 1199–1202 (2013).

    ADS  Google Scholar 

  23. Andrews, S. M. Observations of protoplanetary disk structures. Annu. Rev. Astron. Astrophys. 58, 483–528 (2020).

    ADS  Google Scholar 

  24. Pinilla, P. et al. Trapping dust particles in the outer regions of protoplanetary disks. Astron. Astrophys. 538, A114 (2012).

    Google Scholar 

  25. Youdin, A. N. & Goodman, J. Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459 (2005).

    ADS  Google Scholar 

  26. Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6, 357–366 (2022).

    ADS  Google Scholar 

  27. Hellmann, J. L. et al. Origin of isotopic diversity among carbonaceous chondrites. Astrophys. J. Lett. 946, L34 (2023).

    ADS  Google Scholar 

  28. Booth, A. S. et al. An inherited complex organic molecule reservoir in a warm planet-hosting disk. Nat. Astron. 5, 684–690 (2021).

    ADS  Google Scholar 

  29. van Der Marel, N., Booth, A. S., Leemker, M., van Dishoeck, E. F. & Ohashi, S. A major asymmetric ice trap in a planet-forming disk-I. Formaldehyde and methanol. Astron. Astrophys. 651, L5 (2021).

    ADS  Google Scholar 

  30. Brunken, N. G. C. et al. A major asymmetric ice trap in a planet-forming disk-III. First detection of dimethyl ether. Astron. Astrophys. 659, A29 (2022).

    Google Scholar 

  31. Booth, A. S. et al. Sulphur monoxide emission tracing an embedded planet in the HD 100546 protoplanetary disk. Astron. Astrophys. 669, A53 (2023).

    Google Scholar 

  32. van der Marel, N. Transition disks: the observational revolution from SEDs to imaging. Eur. Phys. J. Plus 138, 225 (2023).

    ADS  Google Scholar 

  33. Pinilla, P., Lenz, C. T. & Stammler, S. M. Growing and trapping pebbles with fragile collisions of particles in protoplanetary disks. Astron. Astrophys. 645, A70 (2021).

    ADS  Google Scholar 

  34. Boogert, A. C. A., Gerakines, P. A. & Whittet, D. C. B. Observations of the icy universe. Annu. Rev. Astron. Astrophys. 53, 541–581 (2015).

    ADS  Google Scholar 

  35. Bruderer, S. Survival of molecular gas in cavities of transition disks-I. CO. Astron. Astrophys. 559, A46 (2013).

    ADS  Google Scholar 

  36. Cevallos Soto, A., Tan, J. C., Hu, X., Hsu, C.-J. & Walsh, C. Inside-out planet formation–VII. Astrochemical models of protoplanetary discs and implications for planetary compositions. Mon. Not. R. Astron. Soc. 517, 2285–2308 (2022).

    ADS  Google Scholar 

  37. Potapov, A., Fulvio, D., Krasnokutski, S., Jäger, C. & Henning, T. Formation of complex organic and prebiotic molecules in H2O:NH3:CO2 ices at temperatures relevant to hot cores, protostellar envelopes, and planet-forming disks. J. Phys. Chem. A 126, 1627–1639 (2022).

    Google Scholar 

  38. Ligterink, N. F. W. et al. Controlling the emission profile of an H2 discharge lamp to simulate interstellar radiation fields. Astron. Astrophys. 584, A56 (2015).

    Google Scholar 

  39. Bacmann, A. et al. CO depletion and deuterium fractionation in prestellar cores. Astrophys. J. 585, L55 (2003).

    ADS  Google Scholar 

  40. Spezzano, S., Caselli, P., Sipilä, O. & Bizzocchi, L. Nitrogen fractionation towards a pre-stellar core traces isotope-selective photodissociation. Astron. Astrophys. 664, L2 (2022).

    ADS  Google Scholar 

  41. Almayrac, M. G. et al. The EXCITING experiment exploring the behavior of nitrogen and noble gases in interstellar ice analogs. Planet. Sci. J. 3, 252 (2022).

    Google Scholar 

  42. Sandford, S. A., Nuevo, M., Bera, P. P. & Lee, T. J. Prebiotic astrochemistry and the formation of molecules of astrobiological interest in interstellar clouds and protostellar disks. Chem. Rev. 120, 4616–4659 (2020).

    Google Scholar 

  43. Qasim, D. et al. Alcohols on the rocks: solid-state formation in a H3CC CH + OH cocktail under dark cloud conditions. ACS Earth Space Chem. 3, 986–999 (2019).

    ADS  Google Scholar 

  44. Raut, U., Fulvio, D., Loeffler, M. J. & Baragiola, R. A. Radiation synthesis of carbon dioxide in ice-coated carbon: implications for interstellar grains and icy moons. Astrophys. J. 752, 159 (2012).

    ADS  Google Scholar 

  45. Qasim, D. et al. Meteorite parent body aqueous alteration simulations of interstellar residue analogs. ACS Earth Space Chem. 7, 156–167 (2023).

    ADS  Google Scholar 

  46. Sandford, S. A., Bernstein, M. P. & Swindle, T. D. The trapping of noble gases by the irradiation and warming of interstellar ice analogs. Meteorit. Planet. Sci. 33, A135 (1998).

    Google Scholar 

  47. Sridhar, S., Bryson, J. F. J., King, A. J. & Harrison, R. J. Constraints on the ice composition of carbonaceous chondrites from their magnetic mineralogy. Earth Planet. Sci. Lett. 576, 117243 (2021).

    Google Scholar 

  48. Yabuta, H. et al. Macromolecular organic matter in samples of the asteroid (162173) Ryugu. Science 379, eabn9057 (2023).

    ADS  Google Scholar 

  49. Blum, J., Bischoff, D. & Gundlach, B. Formation of comets. Universe 8, 381–415 (2022).

    ADS  Google Scholar 

  50. Busemann, H. et al. Interstellar chemistry recorded in organic matter from primitive meteorites. Science 312, 727–730 (2006).

    ADS  Google Scholar 

  51. Binkert, F. & Birnstiel, T. Carbon depletion in the early Solar System. Mon. Not. R. Astron. Soc. 520, 2055–2080 (2023).

    ADS  Google Scholar 

  52. De Gregorio, B. T. et al. Isotopic and chemical variation of organic nanoglobules in primitive meteorites. Meteorit. Planet. Sci. 48, 904–928 (2013).

    ADS  Google Scholar 

  53. Nakamura-Messenger, K., Messenger, S., Keller, L. P., Clemett, S. J. & Zolensky, M. E. Organic globules in the Tagish Lake meteorite: remnants of the protosolar disk. Science 314, 1439–1442 (2006).

    ADS  Google Scholar 

  54. Muñoz-Caro, G. M. et al. Comparison of UV and high-energy ion irradiation of methanol: ammonia ice. Astron. Astrophys. 566, A93 (2014).

    Google Scholar 

  55. Stammler, S. M. & Birnstiel, T. DustPy: a Python package for dust evolution in protoplanetary disks. Astrophys. J. 935, 35 (2022).

    ADS  Google Scholar 

  56. Dullemond, C. P. et al. RADMC-3D: a multi-purpose radiative transfer tool. Astrophysics Source Code Library http://ascl.net/1202.015 (2012).

  57. Cruz-Diaz, G. A., Muñoz-Caro, G. M., Chen, Y.-J. & Yih, T.-S. Vacuum-UV spectroscopy of interstellar ice analogs-I. Absorption cross-sections of polar-ice molecules. Astron. Astrophys. 562, A119 (2014).

    ADS  Google Scholar 

  58. Birnstiel, T., Fang, M. & Johansen, A. Dust evolution and the formation of planetesimals. Space Sci. Rev. 205, 41–75 (2016).

    ADS  Google Scholar 

  59. Ligterink, N. Dust_trap_radiation_model. Zenodo https://zenodo.org/records/11953364 (2024).

Download references

Acknowledgements

We thank E. G. Bøgelund and M. N. Drozdovskaya for insightful discussions. N.F.W.L. is supported by the Swiss National Science Foundation (SNSF) Ambizione Grant 193453. P.P. acknowledges the support from the UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee from ERC (under grant agreement no. 101076489). A.S.B. is supported by a Clay Postdoctoral Fellowship from the Smithsonian Astrophysical Observatory. M.E.I.R. is supported by the SNSF Ambizione Grant 193331.

Author information

Authors and Affiliations

Authors

Contributions

N.F.W.L. developed the model with support from P.P. Analysis and interpretation of the model results were performed by N.F.W.L., P.P., N.v.d.M., J.T.v.S., A.S.B., C.M.O’D.A. and M.E.I.R. All authors contributed to writing and review of the paper.

Corresponding author

Correspondence to Niels F. W. Ligterink.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Martin Cordiner, Joanna Drążkowska and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Dust density distribution for grains of 0.1, 1, 10, and 100 μm in size.

The black dashed lines indicate the total dust density distribution contours at 10−19 and 10–16 g cm−3.

Extended Data Fig. 2 Dust temperatures for grains of 0.1, 1, 10, and 100 μm in size.

The white dashed lines indicate the 100 K temperature contour, while the black dashed lines indicate the total dust density distribution contours at 10−19 and 10−16 g cm−3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ligterink, N.F.W., Pinilla, P., van der Marel, N. et al. The rapid formation of macromolecules in irradiated ice of protoplanetary disk dust traps. Nat Astron 8, 1257–1263 (2024). https://doi.org/10.1038/s41550-024-02334-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02334-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing