Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The nested morphology of disk winds from young stars revealed by JWST/NIRSpec observations

Abstract

Radially extended disk winds could be the key to unlocking how protoplanetary disks accrete and how planets form and migrate. A distinctive characteristic is their nested morphology of velocity and chemistry. Here we report James Webb Space Telescope near-infrared spectrograph spectro-imaging of four young stars with edge-on disks, three of which have already dispersed their natal envelopes. For each source, a fast collimated jet traced by [Fe ii] is nested inside a hollow cavity within wider lower-velocity H2. In one case, a hollow structure is also seen in CO ro-vibrational (v = 1 → 0) emission but with a wider opening angle than the H2, and both of those are nested inside an Atacama Large Millimeter Array CO (J = 2 → 1) cone with an even wider opening angle. This nested morphology, even for sources with no envelope, strongly supports theoretical predictions for wind-driven accretion and underscores the need for theoretical work to assess the role of winds in the formation and evolution of planetary systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spectra integrated over the NIRSpec IFU.
Fig. 2: Composite NIRSpec images.
Fig. 3: Traces of the outer edges of the [Fe ii] at 1.644 μm and H2 S(9) emission.
Fig. 4: Emission structures of [Fe ii], H2 and CO in HH 30.

Similar content being viewed by others

Data availability

The JWST data used in this paper can be found at the Mikulski Archive for Space Telescope under programme IDs 1621 (ref. 56) and 1128 (ref. 57). The first programme covers the four edge-on disks, and the second has the commissioning data used to generate the NIRSpec PSF. Both raw data and fully processed pipeline data can be downloaded from the archive. The spectra integrated over the NIRSpec IFU (Fig. 1) as well as the line-only and continuum maps (Fig. 2) are available via Figshare at https://doi.org/10.6084/m9.figshare.26387977 (ref. 58).

Code availability

The data were reduced with the JWST calibration pipeline v.1.13.4.dev19+gbddb39c6. Upon request, the first author (I.P.) will provide the Python scripts used to analyse the data and generate the figures.

References

  1. Balbus, S. A. & Hawley, J. F. A powerful local shear instability in weakly magnetized disks. I. Linear analysis. Astrophys. J. 376, 214 (1991).

    ADS  MATH  Google Scholar 

  2. Lesur, G. et al. in Protostars and Planets VII (eds Inutsuka, S. et al.) 465–500 (ASP, 2023).

  3. Suzuki, T. K., Ogihara, M., Morbidelli, A., Crida, A. & Guillot, T. Evolution of protoplanetary discs with magnetically driven disc winds. Astron. Astrophys. 596, A74 (2016).

    ADS  MATH  Google Scholar 

  4. Taki, T., Kuwabara, K., Kobayashi, H. & Suzuki, T. K. New growth mechanism of dust grains in protoplanetary disks with magnetically driven disk winds. Astrophys. J. 909, 75 (2021).

    ADS  MATH  Google Scholar 

  5. Kimmig, C. N., Dullemond, C. P. & Kley, W. Effect of wind-driven accretion on planetary migration. Astron. Astrophys. 633, A4 (2020).

    ADS  MATH  Google Scholar 

  6. Wang, L., Bai, X.-N. & Goodman, J. Global simulations of protoplanetary disk outflows with coupled non-ideal magnetohydrodynamics and consistent thermochemistry. Astrophys. J. 874, 90 (2019).

    ADS  MATH  Google Scholar 

  7. Shu, F. et al. Magnetocentrifugally driven flows from young stars and disks. I. A generalized model. Astrophys. J. 429, 781 (1994).

    ADS  MATH  Google Scholar 

  8. Alexander, R., Pascucci, I., Andrews, S., Armitage, P. & Cieza, L. in Protostars and Planets VI (eds Beuther, H. et al.) 475–496 (ASP, 2014).

  9. Panoglou, D. et al. Molecule survival in magnetized protostellar disk winds. I. Chemical model and first results. Astron. Astrophys. 538, A2 (2012).

    MATH  Google Scholar 

  10. Shu, F. H., Najita, J., Ostriker, E. C. & Shang, H. Magnetocentrifugally driven flows from young stars and disks. V. Asymptotic collimation into jets. Astrophys. J. Lett. 455, L155 (1995).

    ADS  Google Scholar 

  11. Matsuyama, I., Johnstone, D. & Hollenbach, D. Dispersal of protoplanetary disks by central wind stripping. Astrophys. J. 700, 10–19 (2009).

    ADS  MATH  Google Scholar 

  12. Cunningham, A., Frank, A. & Hartmann, L. Wide-angle wind-driven bipolar outflows: high-resolution models with application to source I of the Becklin-Neugebauer/Kleinmann-low OMC-I region. Astrophys. J. 631, 1010–1021 (2005).

    ADS  MATH  Google Scholar 

  13. Wang, L. & Goodman, J. Hydrodynamic photoevaporation of protoplanetary disks with consistent thermochemistry. Astrophys. J. 847, 11 (2017).

    ADS  MATH  Google Scholar 

  14. Evans II, N. J. et al. The Spitzer c2d legacy results: star-formation rates and efficiencies; evolution and lifetimes. Astrophys. J. Suppl. Ser. 181, 321–350 (2009).

    ADS  MATH  Google Scholar 

  15. Gangi, M. et al. GIARPS high-resolution observations of T Tauri stars (GHOsT). II. Connecting atomic and molecular winds in protoplanetary disks. Astron. Astrophys. 643, A32 (2020).

    MATH  Google Scholar 

  16. Pascucci, I. et al. in Protostars and Planets VII (eds Inutsuka, S. et al.) 567 (ASP, 2023).

  17. Agra-Amboage, V. et al. Origin of the wide-angle hot H2 in DG Tauri. New insight from SINFONI spectro-imaging. Astron. Astrophys. 564, A11 (2014).

    MATH  Google Scholar 

  18. Beck, T. L. & Bary, J. S. A search for spatially resolved infrared rovibrational molecular hydrogen emission from the disks of young stars. Astrophys. J. 884, 159 (2019).

    ADS  MATH  Google Scholar 

  19. Arulanantham, N. et al. JWST MIRI MRS images of disk winds, water, and CO in an edge-on protoplanetary disk. Astrophys. J. Lett. 965, L13 (2024).

    ADS  MATH  Google Scholar 

  20. Böker, T. et al. In-orbit performance of the near-infrared spectrograph NIRSpec on the James Webb Space Telescope. Publ. Astron. Soc. Pac. 135, 038001 (2023).

    ADS  MATH  Google Scholar 

  21. Villenave, M. et al. Observations of edge-on protoplanetary disks with ALMA. I. Results from continuum data. Astron. Astrophys. 642, A164 (2020).

    MATH  Google Scholar 

  22. Luhman, K. L. The stellar membership of the Taurus star-forming region. Astron. J. 156, 271 (2018).

    ADS  MATH  Google Scholar 

  23. Furlan, E. et al. The Spitzer infrared spectrograph survey of T Tauri stars in Taurus. Astrophys. J. Suppl. Ser. 195, 3 (2011).

    ADS  MATH  Google Scholar 

  24. Crapsi, A., van Dishoeck, E. F., Hogerheijde, M. R., Pontoppidan, K. M. & Dullemond, C. P. Characterizing the nature of embedded young stellar objects through silicate, ice and millimeter observations. Astron. Astrophys. 486, 245–254 (2008).

    ADS  Google Scholar 

  25. Di Francesco, J., Johnstone, D., Kirk, H., MacKenzie, T. & Ledwosinska, E. The SCUBA legacy catalogues: submillimeter-continuum objects detected by SCUBA. Astrophys. J. Suppl. Ser. 175, 277–295 (2008).

    ADS  Google Scholar 

  26. Reipurth, B., Chini, R., Krugel, E., Kreysa, E. & Sievers, A. Cold dust around Herbig-Haro energy sources – a 1300-micron survey. Astron. Astrophys. 273, 221–238 (1993).

    ADS  Google Scholar 

  27. Andrews, S. M. & Williams, J. P. Circumstellar dust disks in Taurus-Auriga: the submillimeter perspective. Astrophys. J. 631, 1134–1160 (2005).

    ADS  MATH  Google Scholar 

  28. Andrews, S. M., Rosenfeld, K. A., Kraus, A. L. & Wilner, D. J. The mass dependence between protoplanetary disks and their stellar hosts. Astrophys. J. 771, 129 (2013).

    ADS  MATH  Google Scholar 

  29. Takami, M. et al. Subaru IR echelle spectroscopy of Herbig-Haro driving sources. I. H2 and [Fe ii] emission. Astrophys. J. 641, 357–372 (2006).

    ADS  MATH  Google Scholar 

  30. Bacciotti, F., Eislöffel, J. & Ray, T. P. The physical properties of the HH 30 jet from HST and ground-based data. Astron. Astrophys. 350, 917–927 (1999).

    ADS  Google Scholar 

  31. Nisini, B. et al. Connection between jets, winds and accretion in T Tauri stars. The X-shooter view. Astron. Astrophys. 609, A87 (2018).

    MATH  Google Scholar 

  32. White, R. J. & Hillenbrand, L. A. On the evolutionary status of class I stars and Herbig-Haro energy sources in Taurus-Auriga. Astrophys. J. 616, 998–1032 (2004).

    ADS  MATH  Google Scholar 

  33. Davis, C. J. et al. VLT integral field spectroscopy of embedded protostars: using near-infrared emission lines as tracers of accretion and outflow. Astron. Astrophys. 528, A3 (2011).

    MATH  Google Scholar 

  34. Nisini, B. et al. PROJECT-J: JWST observations of HH46 IRS and its outflow. Overview and first results. Astrophys. J. 967, 168 (2024).

    ADS  Google Scholar 

  35. Jensen, S. K. et al. Spectroastrometric survey of protoplanetary disks with inner dust cavities. Astron. J. 167, 115 (2024).

    ADS  MATH  Google Scholar 

  36. Eislöffel, J. & Mundt, R. Imaging and kinematic studies of young stellar object jets in Taurus. Astron. J. 115, 1554–1575 (1998).

    ADS  MATH  Google Scholar 

  37. Hartigan, P. & Morse, J. Collimation, proper motions, and physical conditions in the HH 30 jet from Hubble Space Telescope slitless spectroscopy. Astrophys. J. 660, 426–440 (2007).

    ADS  Google Scholar 

  38. Louvet, F. et al. The HH30 edge-on T Tauri star. A rotating and precessing monopolar outflow scrutinized by ALMA. Astron. Astrophys. 618, A120 (2018).

    MATH  Google Scholar 

  39. Erkal, J. et al. Launching the asymmetric bipolar jet of DO Tau. Astron. Astrophys. 650, A46 (2021).

    MATH  Google Scholar 

  40. Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982).

    ADS  MATH  Google Scholar 

  41. Ai, T.-H., Liu, C.-F., Shang, H., Johnstone, D. & Krasnopolsky, R. A unified model for bipolar outflows from young stars: kinematic and mixing structures in HH 30. Astrophys. J. 964, 147 (2024).

    ADS  Google Scholar 

  42. Rabenanahary, M., Cabrit, S., Meliani, Z. & Pineau des Forêts, G. Wide-angle protostellar outflows driven by narrow jets in stratified cores. Astron. Astrophys. 664, A118 (2022).

    ADS  Google Scholar 

  43. Liang, L., Johnstone, D., Cabrit, S. & Kristensen, L. E. Steady wind-blown cavities within infalling rotating envelopes: application to the broad velocity component in young protostars. Astrophys. J. 900, 15 (2020).

    ADS  Google Scholar 

  44. Komaki, A., Nakatani, R. & Yoshida, N. Radiation hydrodynamics simulations of protoplanetary disks: stellar mass dependence of the disk photoevaporation rate. Astrophys. J. 910, 51 (2021).

    ADS  MATH  Google Scholar 

  45. Rab, C. et al. Interpreting molecular hydrogen and atomic oxygen line emission of T Tauri disks with photoevaporative disk-wind models. Astron. Astrophys. 668, A154 (2022).

    MATH  Google Scholar 

  46. Béthune, W., Lesur, G. & Ferreira, J. Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case. Astron. Astrophys. 600, A75 (2017).

    ADS  MATH  Google Scholar 

  47. Giacalone, S., Teitler, S., Königl, A., Krijt, S. & Ciesla, F. J. Dust transport and processing in centrifugally driven protoplanetary disk winds. Astrophys. J. 882, 33 (2019).

    ADS  Google Scholar 

  48. Bushouse, H. et al. JWST Calibration Pipeline (STScI, 2023).

  49. Richardson, W. H. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62, 55 (1972).

    ADS  MATH  Google Scholar 

  50. Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 79, 745 (1974).

    ADS  MATH  Google Scholar 

  51. Perrin, M. D. et al. Updated point spread function simulations for JWST with WebbPSF. In Proc. SPIE Conference Series, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave Vol. 9143 (eds Oschmann, J. M. Jr et al.) 91433X (SPIE, 2014).

  52. Beck, T. L., McGregor, P. J., Takami, M. & Pyo, T.-S. Spatially resolved molecular hydrogen emission in the inner 200 au environments of classical T Tauri stars. Astrophys. J. 676, 472–489 (2008).

    ADS  Google Scholar 

  53. Gordon, I. E. et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949 (2022).

    MATH  Google Scholar 

  54. Mundt, R., Ray, T. P. & Raga, A. C. Collimation of stellar objects – constraints from the observed spatial structure. II. Observational results. Astron. Astrophys. 252, 740–761 (1991).

    ADS  MATH  Google Scholar 

  55. Habel, N. M. et al. An HST survey of protostellar outflow cavities: does feedback clear envelopes? Astrophys. J. 911, 153 (2021).

    ADS  MATH  Google Scholar 

  56. Pascucci, I. Data from paper ‘The nested morphology of disk winds from young stars revealed by JWST/NIRSpec observations’. Mikulski Archive for Space Telescopes https://doi.org/10.17909/3z83-wx27 (2024).

  57. Pascucci, I. Commissioning data used in ‘The nested morphology of disk winds from young stars revealed by JWST/NIRSpec observations’. Mikulski Archive for Space Telescopes https://doi.org/10.17909/325d-tm53 (2024).

  58. Pascucci, I. et al. The nested morphology of disk winds from young stars revealed by JWST/NIRSpec observations. Figshare https://doi.org/10.6084/m9.figshare.26387977 (2024).

  59. Simon, M. et al. Masses and implications for ages of low-mass pre-main-sequence stars in Taurus and Ophiuchus. Astrophys. J. 884, 42 (2019).

    ADS  MATH  Google Scholar 

  60. Duchêne, G. et al. JWST imaging of edge-on protoplanetary disks. I. Fully vertically mixed 10 μm grains in the outer regions of a 1000 au disk. Astron. J. 167, 77 (2024).

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-03127 for JWST. These observations are associated with the general observer cycle 1 programme 1621 (PI I. Pascucci). I.P. and N.S.B. acknowledge partial support from NASA and the Space Telescope Science Institute (GO Grant No. JWST-GO-01621.001, PI I.P.). S.C. acknowledges funding from the funding from the Scientific Council of Observatoire de Paris and the national programme Physique et Chimie du Milieu Interstellaire of Centre National de la Recherche Scientifique, a programme operated through the Institut National des Sciences de l'Univers with Institut National de Chimie and Institut National de Physique and co-funded by the Commissariat à l'Energie Atomique et aux Energies Alternatives and Centre National d'Etudes Spatiales. K.S. and D.S. acknowledge support from the European Research Council (ERC) under the Horizon 2020 Framework Program through ERC Advanced Grant Origins 83 24 28, PI Th. Henning. G.D. acknowledges support from the ERC under the European Union’s Horizon Europe research and innovation programme (Grant Agreement No. 101053020, Project Dust2Planets, PI F. Ménard). M.V. acknowledges support from the ERC under the European Union’s Horizon Europe Research & Innovation Programme (Grant Agreement No. 101039651, DiscEvol, PI G. Rosotti). I.P. thanks D. Deng and F. Long for an initial exploration of the ALMA data for our sources. We acknowledge the use of the following packages: api, Astropy, NumPy, SciPy, sklearn, Matplotlib and pandas.

Author information

Authors and Affiliations

Authors

Contributions

I.P. led the proposal, carried out the analysis and wrote the paper. T.B., S.C., S.E., J.N., U.G., C.S., S.B., S.K., J.M., M.R., K.S. and D.S. contributed to the planning and writing of the JWST proposal. N.S.B. used the JWST pipeline to perform the data reduction. T.B. assisted in planning the observations, in the data reduction and in the PSF deconvolution of the reduced data cubes. F.L. provided the ALMA CO (2 → 1) data for HH 30. B.S. contributed to the initial script used to generate the CO (v = 1 → 0) map and the RGB figures. S.C., S.E., J.N. and U.G. made substantial contributions to the interpretation of the results. All authors participated in the discussion of the results or commented on the paper.

Corresponding author

Correspondence to Ilaria Pascucci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Manuele Gangi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascucci, I., Beck, T.L., Cabrit, S. et al. The nested morphology of disk winds from young stars revealed by JWST/NIRSpec observations. Nat Astron 9, 81–89 (2025). https://doi.org/10.1038/s41550-024-02385-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02385-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing