Abstract
The dynamic properties of molecular clouds are set by the interplay of their self-gravity, turbulence, external pressure and magnetic fields. Extended surveys of Galactic molecular clouds typically find that their kinetic energy (Ek) counterbalances their self-gravitational energy (Eg), setting their virial parameter αvir = 2Ek/∣Eg∣ ≈ 1. However, past studies either have been biased by the use of optically thick lines or have been limited within the solar neighbourhood and the inner Galaxy (Galactocentric radius Rgc < Rgc,⊙ ≈ 8 kpc). Here we present sensitive mapping observations of optically thin 13CO lines towards molecular clouds in the low-metallicity Galactic outer disk (Rgc ~ 9–24 kpc). By combining archival data from the inner Galaxy and four nearby metal-poor dwarf galaxies, we reveal a systematic trend of αvir, which declines from supervirial dynamic states in metal-rich clouds to extremely subvirial dynamic states in metal-poor clouds. In these metal-poor environments, turbulence alone is insufficient to counterbalance the self-gravity of a cloud. A cloud-volumetric magnetic field may replace turbulence as the dominant cloud-supporting mechanism in low-metallicity conditions, for example, the outermost galactic disks, dwarf galaxies and galaxies in the early Universe, which would then inevitably impact the initial conditions for star formation in such environments.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
118,99 € per year
only 9,92 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
The following data and figures are available via figshare at https://doi.org/10.6084/m9.figshare.27282924 (ref. 105): (1) reduced data cubes of the new observations presented in this work (subfolder GMPMC_line_fitscubes), (2) 13CO spectra and \({N}_{{{\rm{H}}}_{2}}\) maps (subfolder Supp_Figures/NH2_13CO_spectrum), (3) infrared and radio images (subfolder Supp_Figures/IR_Radio_outer_disk_clouds) and (4) distance PDFs of the Galactic molecular clouds (subfolder Supp_Figures/Distance_PDFs). This work is based on observations carried out under Projects 031-17 and 102-22 with the IRAM 30 m telescope, Projects ADS/JAO.ALMA#2013.1.00652.S, ADS/JAO.ALMA#2015.1.00581.S, ADS/JAO.ALMA#2019.1.01641.S and ADS/JAO.ALMA#2021.2.00175.S with ALMA, and Project Lin_L_22B_1 with SMT. Source data are provided with this paper.
Code availability
Code for calculating the critical densities can be obtained from GitHub (https://github.com/ZhiyuZhang/critical_densities).
References
Larson, R. B. Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981).
Solomon, P. M., Rivolo, A. R., Barrett, J. & Yahil, A. Mass, luminosity, and line width relations of Galactic molecular clouds. Astrophys. J. 319, 730 (1987).
Heyer, M., Krawczyk, C., Duval, J. & Jackson, J. M. Re-examining Larson’s scaling relationships in Galactic molecular clouds. Astrophys. J. 699, 1092–1103 (2009).
Miville-Deschênes, M.-A., Murray, N. & Lee, E. J. Physical properties of molecular clouds for the entire Milky Way disk. Astrophys. J. 834, 57 (2017).
Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F. & Blitz, L. The resolved properties of extragalactic giant molecular clouds. Astrophys. J. 686, 948–965 (2008).
Fukui, Y. & Kawamura, A. Molecular clouds in nearby galaxies. Annu. Rev. Astron. Astrophys. 48, 547–580 (2010).
Hughes, A. et al. Physical properties of giant molecular clouds in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 406, 2065–2086 (2010).
Schruba, A. et al. Physical properties of molecular clouds at 2 pc resolution in the low-metallicity dwarf galaxy NGC 6822 and the Milky Way. Astrophys. J. 835, 278 (2017).
Wong, T. et al. Relations between molecular cloud structure sizes and line widths in the Large Magellanic Cloud. Astrophys. J. 885, 50 (2019).
Saldaño, H. P. et al. CO(2 – 1) survey at 9 pc resolution in the Small Magellanic Cloud. Astron. Astrophys. 672, A153 (2023).
Elmegreen, B. G. A pressure and metallicity dependence for molecular cloud correlations and the calibration of mass. Astrophys. J. 338, 178 (1989).
Ballesteros-Paredes, J. Six myths on the virial theorem for interstellar clouds. Mon. Not. R. Astron. Soc. 372, 443–449 (2006).
Bertoldi, F. & McKee, C. F. Pressure-confined clumps in magnetized molecular clouds. Astrophys. J. 395, 140 (1992).
Sun, J. et al. Cloud-scale molecular gas properties in 15 nearby galaxies. Astrophys. J. 860, 172 (2018).
Federrath, C. et al. The link between turbulence, magnetic fields, filaments, and star formation in the central molecular zone cloud G0.253+0.016. Astrophys. J. 832, 143 (2016).
Liu, L. et al. WISDOM Project. IX. Giant molecular clouds in the lenticular galaxy NGC 4429: effects of shear and tidal forces on clouds. Mon. Not. R. Astron. Soc. 505, 4048–4085 (2021).
Petkova, M. A. et al. Kinematics of Galactic Centre clouds shaped by shear-seeded solenoidal turbulence. Mon. Not. R. Astron. Soc. 525, 962–968 (2023).
Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).
Swinbank, A. M. et al. The interstellar medium in distant star-forming galaxies: turbulent pressure, fragmentation, and cloud scaling relations in a dense gas disk at z = 2.3. Astrophys. J. 742, 11 (2011).
McKee, C. F. & Tan, J. C. The formation of massive stars from turbulent cores. Astrophys. J. 585, 850–871 (2003).
Völschow, M., Banerjee, R. & Körtgen, B. Star formation in evolving molecular clouds. Astron. Astrophys. 605, A97 (2017).
Hacar, A., Alves, J., Burkert, A. & Goldsmith, P. Opacity broadening and interpretation of suprathermal CO linewidths: macroscopic turbulence and tangled molecular clouds. Astron. Astrophys. 591, A104 (2016).
Wilson, T. L. & Rood, R. Abundances in the interstellar medium. Annu. Rev. Astron. Astrophys. 32, 191–226 (1994).
Rathborne, J. M., Johnson, A. M., Jackson, J. M., Shah, R. Y. & Simon, R. Molecular clouds and clumps in the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey. Astrophys. J. Suppl. Ser. 182, 131–142 (2009).
Heyer, M. H., Carpenter, J. M. & Snell, R. L. The equilibrium state of molecular regions in the outer Galaxy. Astrophys. J. 551, 852–866 (2001).
Benedettini, M. et al. Molecular cloud catalogue from 13CO (1–0) data of the Forgotten Quadrant Survey. Astron. Astrophys. 654, A144 (2021).
Roman-Duval, J., Jackson, J. M., Heyer, M., Rathborne, J. & Simon, R. Physical properties and Galactic distribution of molecular clouds identified in the Galactic Ring Survey. Astrophys. J. 723, 492–507 (2010).
Rigby, A. J. et al. CHIMPS: physical properties of molecular clumps across the inner Galaxy. Astron. Astrophys. 632, A58 (2019).
Knapen, J. H., Lee, J. C. & de Paz, A. G. Outskirts of Galaxies (Springer, 2017).
Wolfire, M. G., McKee, C. F., Hollenbach, D. & Tielens, A. G. G. M. Neutral atomic phases of the interstellar medium in the Galaxy. Astrophys. J. 587, 278–311 (2003).
Méndez-Delgado, J. E. et al. Gradients of chemical abundances in the Milky Way from H ii regions: distances derived from Gaia EDR3 parallaxes and temperature inhomogeneities. Mon. Not. R. Astron. Soc. 510, 4436–4455 (2022).
Chiappini, C. The chemical evolution of the galactic thick and thin disks. Proc. Int. Astron. Union 4, 191–196 (2008).
Shi, Y. et al. Inefficient star formation in extremely metal poor galaxies. Nature 514, 335–338 (2014).
Hunt, L. K. et al. ALMA observations of cool dust in a low-metallicity starburst, SBS 0335-052. Astron. Astrophys. 561, A49 (2014).
Jacob, A. M. et al. First detection of 13CH in the interstellar medium. Astron. Astrophys. 640, A125 (2020).
Reid, M. J. et al. Trigonometric parallaxes of high-mass star-forming regions: our view of the Milky Way. Astrophys. J. 885, 131 (2019).
Russell, S. C. & Dopita, M. A. Abundances of the heavy elements in the Magellanic Clouds. III. Interpretation of results. Astrophys. J. 384, 508 (1992).
Jameson, K. E. et al. First results from the Herschel and ALMA spectroscopic surveys of the SMC: the relationship between [C ii]-bright gas and CO-bright gas at low metallicity. Astrophys. J. 853, 111 (2018).
Pagel, B. E. J. in NO in the Universe Vol. 304 (eds Charbonnel, C. et al.) 187 (ASP, 2003).
García-Rojas, J., Peña, M., Flores-Durán, S. & Hernández-Martínez, L. The planetary nebulae and H ii regions in NGC 6822 revisited. Clues to AGB nucleosynthesis. Astron. Astrophys. 586, A59 (2016).
Shi, Y. et al. Oversized gas clumps in an extremely metal-poor molecular cloud revealed by ALMA’s parsec-scale maps. Astrophys. J. 892, 147 (2020).
Ohno, T. et al. An unbiased CO survey toward the northern region of the Small Magellanic Cloud with the Atacama Compact Array. II. CO cloud catalog. Astrophys. J. 949, 63 (2023).
Spitzer Jr, L. Physical Processes in the Interstellar Medium (John Wiley & Sons, 2008).
Williams, J. P., Bergin, E. A., Caselli, P., Myers, P. C. & Plume, R. The ionization fraction in dense molecular gas. I. Low-mass cores. Astrophys. J. 503, 689–699 (1998).
Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E. & Troland, T. H. Magnetic fields in interstellar clouds from Zeeman observations: inference of total field strengths by Bayesian analysis. Astrophys. J. 725, 466–479 (2010).
Kobayashi, M. I. N. et al. Metallicity dependence of molecular cloud hierarchical structure at early evolutionary stages. Astrophys. J. 954, 38 (2023).
Lequeux, J. The Interstellar Medium (Springer Science & Business Media, 2004).
Field, G. B., Blackman, E. G. & Keto, E. R. Does external pressure explain recent results for molecular clouds? Mon. Not. R. Astron. Soc. 416, 710–714 (2011).
Ramírez-Galeano, L., Ballesteros-Paredes, J., Smith, R. J., Camacho, V. & Zamora-Avilés, M. Why most molecular clouds are gravitationally dominated. Mon. Not. R. Astron. Soc. 515, 2822–2836 (2022).
Curtis-Lake, E. et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat. Astron. 7, 622–632 (2023).
Wouterloot, J. G. A. & Brand, J. IRAS sources beyond the solar circle. I. CO observations. Astron. Astrophys. Suppl. Ser. 80, 149–187 (1989).
Sun, Y. et al. A possible extension of the Scutum-Centaurus arm into the outer second quadrant. Astrophys. J. Lett. 798, L27 (2015).
Li, H.-K. et al. Oxygen isotopic ratios toward molecular clouds in the Galactic disk. Res. Astron. Astrophys. 16, 47 (2016).
Sun, Y. et al. Molecular clouds in the extreme outer Galaxy between l = 34.°75 to 45.°25. Astrophys. J. Suppl. Ser. 230, 17 (2017).
Jackson, J. M. et al. The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey. Astrophys. J. Suppl. Ser. 163, 145–159 (2006).
Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019).
Graczyk, D. et al. A distance determination to the Small Magellanic Cloud with an accuracy of better than two percent based on late-type eclipsing binary stars. Astrophys. J. 904, 13 (2020).
Rich, J. A. et al. A new cepheid distance measurement and method for NGC 6822. Astrophys. J. 794, 107 (2014).
Whiting, M. T. DUCHAMP: a 3D source finder for spectral-line data. Mon. Not. R. Astron. Soc. 421, 3242–3256 (2012).
Di Teodoro, E. M. & Fraternali, F. 3DBAROLO: a new 3D algorithm to derive rotation curves of galaxies. Mon. Not. R. Astron. Soc. 451, 3021–3033 (2015).
Mangum, J. G. & Shirley, Y. L. How to calculate molecular column density. Publ. Astron. Soc. Pac. 127, 266 (2015).
Tang, X. D. et al. Kinetic temperature of massive star forming molecular clumps measured with formaldehyde. Astron. Astrophys. 598, A30 (2017).
Chira, R. A. et al. Characterization of infrared dark clouds. NH3 observations of an absorption-contrast selected IRDC sample. Astron. Astrophys. 552, A40 (2013).
Fehér, O. et al. Ammonia emission in various star-forming environments: a pilot study of Planck galactic cold clumps. Astrophys. J. Suppl. Ser. 258, 17 (2022).
Garden, R. P., Hayashi, M., Gatley, I., Hasegawa, T. & Kaifu, N. A spectroscopic study of the DR 21 outflow source. III. The CO line emission. Astrophys. J. 374, 540 (1991).
Lacy, J. H., Sneden, C., Kim, H. & Jaffe, D. T. H2, CO, and dust absorption through cold molecular clouds. Astrophys. J. 838, 66 (2017).
Fujii, K. et al. Dense molecular clumps associated with the Large Magellanic Cloud supergiant shells LMC 4 and LMC 5. Astrophys. J. 796, 123 (2014).
Condon, J. J. Errors in elliptical Gaussian fits. Publ. Astron. Soc. Pac. 109, 166–172 (1997).
Mueller, K. E., Shirley, Y. L., Evans, I., Neal, J. & Jacobson, H. R. The physical conditions for massive star formation: dust continuum maps and modeling. Astrophys. J. Suppl. Ser. 143, 469–497 (2002).
Wouterloot, J. G. A. & Brand, J. IRAS sources beyond the solar circle. VII. The 12C/13C ratio in the far outer Galaxy. Astron. Astrophys. Suppl. Ser. 119, 439–457 (1996).
Milam, S. N., Savage, C., Brewster, M. A., Ziurys, L. M. & Wyckoff, S. The 12C/13C isotope gradient derived from millimeter transitions of CN: the case for galactic chemical evolution. Astrophys. J. 634, 1126–1132 (2005).
Sun, Y. et al. An improved method to measure 12C/13C and 14N/15N abundance ratios: revisiting CN isotopologues in the Galactic outer disc. Mon. Not. R. Astron. Soc. 527, 8151–8192 (2024).
Szűcs, L., Glover, S. C. O. & Klessen, R. S. The 12CO/13CO ratio in turbulent molecular clouds. Mon. Not. R. Astron. Soc. 445, 4055–4072 (2014).
Dickman, R. L. The ratio of carbon monoxide to molecular hydrogen in interstellar dark clouds. Astrophys. J. Suppl. Ser. 37, 407–427 (1978).
Frerking, M. A., Langer, W. D. & Wilson, R. W. The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. Astrophys. J. 262, 590–605 (1982).
Romano, D., Matteucci, F., Zhang, Z.-Y., Ivison, R. J. & Ventura, P. The evolution of CNO isotopes: the impact of massive stellar rotators. Mon. Not. R. Astron. Soc. 490, 2838–2854 (2019).
Glover, S. C. O. & Clark, P. C. Star formation in metal-poor gas clouds. Mon. Not. R. Astron. Soc. 426, 377–388 (2012).
Kauffmann, J., Pillai, T. & Goldsmith, P. F. Low virial parameters in molecular clouds: implications for high-mass star formation and magnetic fields. Astrophys. J. 779, 185 (2013).
Meidt, S. E. et al. A model for the onset of self-gravitation and star formation in molecular gas governed by galactic forces. I. Cloud-scale gas motions. Astrophys. J. 854, 100 (2018).
Zhang, Z.-Y. et al. Physical conditions of molecular gas in the Circinus galaxy multi-J CO and Ci 3PP0 observations. Astron. Astrophys. 568, A122 (2014).
Papadopoulos, P. P. & Seaquist, E. R. The state of the molecular gas in a luminous starburst/Seyfert 2 Galaxy: NGC 1068 revisited. Astrophys. J. 516, 114–126 (1999).
Elmegreen, B. G. Magnetic diffusion and ionization fractions in dense molecular clouds: the role of charged grains. Astrophys. J. 232, 729–739 (1979).
Padovani, M. On the origin of cosmic-ray ionisation in star-forming regions. In Proc. Physics and Chemistry of Star Formation: The Dynamical ISM Across Time and Spatial Scales (eds O.-O., V. et al.) 237 (Kölner UniversitätsPublikationsServer, 2023).
Crutcher, R. M. Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012).
Ching, T. C. et al. An early transition to magnetic supercriticality in star formation. Nature 601, 49–52 (2022).
Cao, Z. & Li, H.-b Turbulence in Zeeman measurements from molecular clouds. Astrophys. J. Lett. 946, L46 (2023).
Basu, A. & Roy, S. Magnetic fields in nearby normal galaxies: energy equipartition. Mon. Not. R. Astron. Soc. 433, 1675–1686 (2013).
Beck, R. Magnetic fields in the nearby spiral galaxy IC 342: a multi-frequency radio polarization study. Astron. Astrophys. 578, A93 (2015).
Li, D., Kauffmann, J., Zhang, Q. & Chen, W. Massive quiescent cores in Orion: dynamical state revealed by high-resolution ammonia maps. Astrophys. J. Lett. 768, L5 (2013).
Wang, K., Wang, Y. & Xu, F. Massive star formation starts in subvirial dense clumps unless resisted by strong magnetic fields. Astrophys. J. Lett. 974, L6 (2024).
Koda, J., Sawada, T., Hasegawa, T. & Scoville, N. Z. The elongations and supersonic motions of molecular clouds. Astrophys. J. 638, 191–195 (2006).
Tan, J. C., Krumholz, M. R. & McKee, C. F. Equilibrium star cluster formation. Astrophys. J. Lett. 641, L121–L124 (2006).
Padoan, P., Pan, L., Haugbølle, T., & Nordlund, Å. Supernova driving. I. The origin of molecular cloud turbulence. Astrophys. J. 822, 11 (2016).
Aouad, C. J., James, P. A. & Chilingarian, I. V. Coupling local to global star formation in spiral galaxies: the effect of differential rotation. Mon. Not. R. Astron. Soc. 496, 5211–5226 (2020).
Lee, E. J., Miville-Deschênes, M.-A. & Murray, N. W. Observational evidence of dynamic star formation rate in Milky Way giant molecular clouds. Astrophys. J. 833, 229 (2016).
Elia, D. et al. The star formation rate of the Milky Way as seen by Herschel. Astrophys. J. 941, 162 (2022).
Lada, C. J. Star formation: from OB associations to protostars. In Proc. Symposium – International Astronomical Union Vol. 115 (eds P., M. and Jugaku, J.) 1–18 (Cambridge Univ. Press, 1987).
Hansen, C. E., Klein, R. I., McKee, C. F. & Fisher, R. T. Feedback effects on low-mass star formation. Astrophys. J. 747, 22 (2012).
Li, H. et al. Outflows and bubbles in Taurus: star-formation feedback sufficient to maintain turbulence. Astrophys. J. Suppl. Ser. 219, 20 (2015).
Sun, Y. et al. Discovery of H2O, CH3OH, and OH masers in the extreme outer Galaxy. Astrophys. J. 869, 148 (2018).
Shirley, Y. L. The critical density and the effective excitation density of commonly observed molecular dense gas tracers. Publ. Astron. Soc. Pac. 127, 299 (2015).
Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013).
Draine, B. T. Physics of the Interstellar and Intergalactic Medium Vol. 19 (Princeton Univ. Press, 2010).
Oka, T. et al. Statistical properties of molecular clouds in the Galactic Center. Astrophys. J. 562, 348–362 (2001).
Lin, L. Dataset for the paper — Inadequate turbulent support in low-metallicity molecular clouds. figshare https://doi.org/10.6084/m9.figshare.27282924 (2024).
Acknowledgements
This work is supported by the National Key Research & Development (R&D) Programme of China (Grant No. 2023YFA1608204). Z.-Y.Z., L. Lin, Yichen Sun and G.L. acknowledge the support of the National Natural Science Foundation of China (NSFC; Grant Nos. 12173016 and 12041305), science research grants from the China Manned Space Project (Grant Nos. CMS-CSST-2021-A08 and CMS-CSST-2021-A07) and the Programme for Innovative Talents, Entrepreneur in Jiangsu. This work also benefited from the International Space Science Institute (ISSI/ISSI-BJ) in Bern and Beijing, thanks to funding for the team ‘Chemical abundances in the ISM: the litmus test of stellar IMF variations in galaxies across cosmic time’ (PIs D.R. and Z.-Y.Z.). J. Wang gives thanks for the support of the NSFC (Grant No. 12173067) and the Guangxi Talent Programme (Highland of Innovation Talents). Y.G. is supported by the Strategic Priority Research Programme of the Chinese Academy of Sciences (Grant No. XDB0800301). Yan Sun is supported by the Youth Innovation Promotion Association, CAS (Grant No. 2022085), and the Light of West China Programme (Grant No. xbzg-zdsys-202212). T.G.B. acknowledges support from the Leading Innovation and Entrepreneurship Team of Zhejiang Province of China (Grant No. 2023R01008). D.R. thanks the Italian National Institute for Astrophysics for funding the project ‘An in-depth theoretical study of CNO element evolution in galaxies’ through Finanziamento della Ricerca Fondamentale, Theory Grant Fu. Ob. 1.05.12.06.08. D.L. is a New Cornerstone investigator. H.B.L. is supported by the National Science and Technology Council of Taiwan (Grant Nos. 111-2112-M-110-022-MY3 and 113-2112-M-110-022-MY3). K.Q. acknowledges support from the NSFC (Grant Nos. 12425304 and U1731237) and the National Key R&D Programme of China (Grant Nos. 2023YFA1608204 and 2022YFA1603100). C.-W.T. is supported by the NSFC (Grant No. 11988101). J. Wu gives thanks for support from the NSFC (Grant No. 12041302) and the Tianchi Talent Programme of Xinjiang Uygur Autonomous Region. S.F. acknowledges support from the NSFC (Grant No. 12373023), a starting grant at Xiamen University and the presidential excellence fund at Xiamen University (Grant No. 20720220024). This work is based on observations carried out under Projects 031-17 and 102-22 with the IRAM 30 m telescope, Projects ADS/JAO.ALMA#2013.1.00652.S, ADS/JAO.ALMA#2015.1.00581.S, ADS/JAO.ALMA#2019.1.01641.S and ADS/JAO.ALMA#2021.2.00175.S with ALMA, and Project Lin_L_22B_1 with SMT. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The Heinrich Hertz SMT is operated by the Arizona Radio Observatory, which is part of Steward Observatory at the University of Arizona.
Author information
Authors and Affiliations
Contributions
L. Lin led the project, conducted the data reduction and analyses, and drafted proposals and the paper. Z.-Y.Z. initiated and supervised the whole project and improved the paper. J. Wang helped with the data analysis and validating tests. P.P.P. instructed the general virial analysis and outlined the larger theoretical picture. Yong Shi helped extend this work to low-metallicity dwarf galaxies. Y.G. helped improve the paper and was involved in discussions. Yan Sun provided the initial catalogue and helped with calculating the cloud distances. Yichen Sun, T.G.B. and D.R. helped with the abundance ratios. D.L., H.B.L. and K.Q. helped with discussions on magnetic fields. B.Z. helped with validating the distance measurements. L. Liu, G.L., C.-W.T., J. Wu and S.F. helped with discussions and in improving the paper. All authors reviewed the paper and were involved in discussions, telescope proposals and observations on which the raw data and the analyses were based.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Tables 1–3 and Figs. 1–11.
Source data
Source Data Figs. 1–3
Statistical source data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lin, L., Zhang, ZY., Wang, J. et al. Inadequate turbulent support in low-metallicity molecular clouds. Nat Astron 9, 406–416 (2025). https://doi.org/10.1038/s41550-024-02440-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-024-02440-3