Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inadequate turbulent support in low-metallicity molecular clouds

Abstract

The dynamic properties of molecular clouds are set by the interplay of their self-gravity, turbulence, external pressure and magnetic fields. Extended surveys of Galactic molecular clouds typically find that their kinetic energy (Ek) counterbalances their self-gravitational energy (Eg), setting their virial parameter αvir = 2Ek/Eg ≈ 1. However, past studies either have been biased by the use of optically thick lines or have been limited within the solar neighbourhood and the inner Galaxy (Galactocentric radius Rgc < Rgc, ≈ 8 kpc). Here we present sensitive mapping observations of optically thin 13CO lines towards molecular clouds in the low-metallicity Galactic outer disk (Rgc ~ 9–24 kpc). By combining archival data from the inner Galaxy and four nearby metal-poor dwarf galaxies, we reveal a systematic trend of αvir, which declines from supervirial dynamic states in metal-rich clouds to extremely subvirial dynamic states in metal-poor clouds. In these metal-poor environments, turbulence alone is insufficient to counterbalance the self-gravity of a cloud. A cloud-volumetric magnetic field may replace turbulence as the dominant cloud-supporting mechanism in low-metallicity conditions, for example, the outermost galactic disks, dwarf galaxies and galaxies in the early Universe, which would then inevitably impact the initial conditions for star formation in such environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of molecular clouds on the Galactic plane.
Fig. 2: Variations of the cloud velocity dispersion.
Fig. 3: Cloud virial parameter as a function of the gas-phase metallicity.

Similar content being viewed by others

Data availability

The following data and figures are available via figshare at https://doi.org/10.6084/m9.figshare.27282924 (ref. 105): (1) reduced data cubes of the new observations presented in this work (subfolder GMPMC_line_fitscubes), (2) 13CO spectra and \({N}_{{{\rm{H}}}_{2}}\) maps (subfolder Supp_Figures/NH2_13CO_spectrum), (3) infrared and radio images (subfolder Supp_Figures/IR_Radio_outer_disk_clouds) and (4) distance PDFs of the Galactic molecular clouds (subfolder Supp_Figures/Distance_PDFs). This work is based on observations carried out under Projects 031-17 and 102-22 with the IRAM 30 m telescope, Projects ADS/JAO.ALMA#2013.1.00652.S, ADS/JAO.ALMA#2015.1.00581.S, ADS/JAO.ALMA#2019.1.01641.S and ADS/JAO.ALMA#2021.2.00175.S with ALMA, and Project Lin_L_22B_1 with SMT. Source data are provided with this paper.

Code availability

Code for calculating the critical densities can be obtained from GitHub (https://github.com/ZhiyuZhang/critical_densities).

References

  1. Larson, R. B. Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981).

    Article  MATH  ADS  Google Scholar 

  2. Solomon, P. M., Rivolo, A. R., Barrett, J. & Yahil, A. Mass, luminosity, and line width relations of Galactic molecular clouds. Astrophys. J. 319, 730 (1987).

    Article  MATH  ADS  Google Scholar 

  3. Heyer, M., Krawczyk, C., Duval, J. & Jackson, J. M. Re-examining Larson’s scaling relationships in Galactic molecular clouds. Astrophys. J. 699, 1092–1103 (2009).

    Article  ADS  Google Scholar 

  4. Miville-Deschênes, M.-A., Murray, N. & Lee, E. J. Physical properties of molecular clouds for the entire Milky Way disk. Astrophys. J. 834, 57 (2017).

    Article  ADS  Google Scholar 

  5. Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F. & Blitz, L. The resolved properties of extragalactic giant molecular clouds. Astrophys. J. 686, 948–965 (2008).

    Article  ADS  Google Scholar 

  6. Fukui, Y. & Kawamura, A. Molecular clouds in nearby galaxies. Annu. Rev. Astron. Astrophys. 48, 547–580 (2010).

    Article  MATH  ADS  Google Scholar 

  7. Hughes, A. et al. Physical properties of giant molecular clouds in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 406, 2065–2086 (2010).

    MATH  ADS  Google Scholar 

  8. Schruba, A. et al. Physical properties of molecular clouds at 2 pc resolution in the low-metallicity dwarf galaxy NGC 6822 and the Milky Way. Astrophys. J. 835, 278 (2017).

    Article  ADS  Google Scholar 

  9. Wong, T. et al. Relations between molecular cloud structure sizes and line widths in the Large Magellanic Cloud. Astrophys. J. 885, 50 (2019).

    Article  MATH  ADS  Google Scholar 

  10. Saldaño, H. P. et al. CO(2 – 1) survey at 9 pc resolution in the Small Magellanic Cloud. Astron. Astrophys. 672, A153 (2023).

    Article  Google Scholar 

  11. Elmegreen, B. G. A pressure and metallicity dependence for molecular cloud correlations and the calibration of mass. Astrophys. J. 338, 178 (1989).

    Article  MATH  ADS  Google Scholar 

  12. Ballesteros-Paredes, J. Six myths on the virial theorem for interstellar clouds. Mon. Not. R. Astron. Soc. 372, 443–449 (2006).

    Article  MATH  ADS  Google Scholar 

  13. Bertoldi, F. & McKee, C. F. Pressure-confined clumps in magnetized molecular clouds. Astrophys. J. 395, 140 (1992).

    Article  MATH  ADS  Google Scholar 

  14. Sun, J. et al. Cloud-scale molecular gas properties in 15 nearby galaxies. Astrophys. J. 860, 172 (2018).

    Article  MATH  ADS  Google Scholar 

  15. Federrath, C. et al. The link between turbulence, magnetic fields, filaments, and star formation in the central molecular zone cloud G0.253+0.016. Astrophys. J. 832, 143 (2016).

    Article  MATH  ADS  Google Scholar 

  16. Liu, L. et al. WISDOM Project. IX. Giant molecular clouds in the lenticular galaxy NGC 4429: effects of shear and tidal forces on clouds. Mon. Not. R. Astron. Soc. 505, 4048–4085 (2021).

    Article  MATH  ADS  Google Scholar 

  17. Petkova, M. A. et al. Kinematics of Galactic Centre clouds shaped by shear-seeded solenoidal turbulence. Mon. Not. R. Astron. Soc. 525, 962–968 (2023).

    Article  MATH  ADS  Google Scholar 

  18. Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).

    Article  ADS  Google Scholar 

  19. Swinbank, A. M. et al. The interstellar medium in distant star-forming galaxies: turbulent pressure, fragmentation, and cloud scaling relations in a dense gas disk at z = 2.3. Astrophys. J. 742, 11 (2011).

    Article  MATH  ADS  Google Scholar 

  20. McKee, C. F. & Tan, J. C. The formation of massive stars from turbulent cores. Astrophys. J. 585, 850–871 (2003).

    Article  MATH  ADS  Google Scholar 

  21. Völschow, M., Banerjee, R. & Körtgen, B. Star formation in evolving molecular clouds. Astron. Astrophys. 605, A97 (2017).

    Article  ADS  Google Scholar 

  22. Hacar, A., Alves, J., Burkert, A. & Goldsmith, P. Opacity broadening and interpretation of suprathermal CO linewidths: macroscopic turbulence and tangled molecular clouds. Astron. Astrophys. 591, A104 (2016).

    Article  ADS  Google Scholar 

  23. Wilson, T. L. & Rood, R. Abundances in the interstellar medium. Annu. Rev. Astron. Astrophys. 32, 191–226 (1994).

    Article  MATH  ADS  Google Scholar 

  24. Rathborne, J. M., Johnson, A. M., Jackson, J. M., Shah, R. Y. & Simon, R. Molecular clouds and clumps in the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey. Astrophys. J. Suppl. Ser. 182, 131–142 (2009).

    Article  ADS  Google Scholar 

  25. Heyer, M. H., Carpenter, J. M. & Snell, R. L. The equilibrium state of molecular regions in the outer Galaxy. Astrophys. J. 551, 852–866 (2001).

    Article  MATH  ADS  Google Scholar 

  26. Benedettini, M. et al. Molecular cloud catalogue from 13CO (1–0) data of the Forgotten Quadrant Survey. Astron. Astrophys. 654, A144 (2021).

    Article  MATH  Google Scholar 

  27. Roman-Duval, J., Jackson, J. M., Heyer, M., Rathborne, J. & Simon, R. Physical properties and Galactic distribution of molecular clouds identified in the Galactic Ring Survey. Astrophys. J. 723, 492–507 (2010).

    Article  ADS  Google Scholar 

  28. Rigby, A. J. et al. CHIMPS: physical properties of molecular clumps across the inner Galaxy. Astron. Astrophys. 632, A58 (2019).

    Article  MATH  Google Scholar 

  29. Knapen, J. H., Lee, J. C. & de Paz, A. G. Outskirts of Galaxies (Springer, 2017).

  30. Wolfire, M. G., McKee, C. F., Hollenbach, D. & Tielens, A. G. G. M. Neutral atomic phases of the interstellar medium in the Galaxy. Astrophys. J. 587, 278–311 (2003).

    Article  MATH  ADS  Google Scholar 

  31. Méndez-Delgado, J. E. et al. Gradients of chemical abundances in the Milky Way from H ii regions: distances derived from Gaia EDR3 parallaxes and temperature inhomogeneities. Mon. Not. R. Astron. Soc. 510, 4436–4455 (2022).

    Article  MATH  ADS  Google Scholar 

  32. Chiappini, C. The chemical evolution of the galactic thick and thin disks. Proc. Int. Astron. Union 4, 191–196 (2008).

    Article  MATH  Google Scholar 

  33. Shi, Y. et al. Inefficient star formation in extremely metal poor galaxies. Nature 514, 335–338 (2014).

    Article  MATH  ADS  Google Scholar 

  34. Hunt, L. K. et al. ALMA observations of cool dust in a low-metallicity starburst, SBS 0335-052. Astron. Astrophys. 561, A49 (2014).

    Article  MATH  Google Scholar 

  35. Jacob, A. M. et al. First detection of 13CH in the interstellar medium. Astron. Astrophys. 640, A125 (2020).

    Article  MATH  Google Scholar 

  36. Reid, M. J. et al. Trigonometric parallaxes of high-mass star-forming regions: our view of the Milky Way. Astrophys. J. 885, 131 (2019).

    Article  MATH  ADS  Google Scholar 

  37. Russell, S. C. & Dopita, M. A. Abundances of the heavy elements in the Magellanic Clouds. III. Interpretation of results. Astrophys. J. 384, 508 (1992).

    Article  MATH  ADS  Google Scholar 

  38. Jameson, K. E. et al. First results from the Herschel and ALMA spectroscopic surveys of the SMC: the relationship between [C ii]-bright gas and CO-bright gas at low metallicity. Astrophys. J. 853, 111 (2018).

    Article  MATH  ADS  Google Scholar 

  39. Pagel, B. E. J. in NO in the Universe Vol. 304 (eds Charbonnel, C. et al.) 187 (ASP, 2003).

  40. García-Rojas, J., Peña, M., Flores-Durán, S. & Hernández-Martínez, L. The planetary nebulae and H ii regions in NGC 6822 revisited. Clues to AGB nucleosynthesis. Astron. Astrophys. 586, A59 (2016).

    Article  ADS  Google Scholar 

  41. Shi, Y. et al. Oversized gas clumps in an extremely metal-poor molecular cloud revealed by ALMA’s parsec-scale maps. Astrophys. J. 892, 147 (2020).

    Article  ADS  Google Scholar 

  42. Ohno, T. et al. An unbiased CO survey toward the northern region of the Small Magellanic Cloud with the Atacama Compact Array. II. CO cloud catalog. Astrophys. J. 949, 63 (2023).

    Article  MATH  ADS  Google Scholar 

  43. Spitzer Jr, L. Physical Processes in the Interstellar Medium (John Wiley & Sons, 2008).

  44. Williams, J. P., Bergin, E. A., Caselli, P., Myers, P. C. & Plume, R. The ionization fraction in dense molecular gas. I. Low-mass cores. Astrophys. J. 503, 689–699 (1998).

    Article  MATH  ADS  Google Scholar 

  45. Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E. & Troland, T. H. Magnetic fields in interstellar clouds from Zeeman observations: inference of total field strengths by Bayesian analysis. Astrophys. J. 725, 466–479 (2010).

    Article  ADS  Google Scholar 

  46. Kobayashi, M. I. N. et al. Metallicity dependence of molecular cloud hierarchical structure at early evolutionary stages. Astrophys. J. 954, 38 (2023).

    Article  MATH  ADS  Google Scholar 

  47. Lequeux, J. The Interstellar Medium (Springer Science & Business Media, 2004).

  48. Field, G. B., Blackman, E. G. & Keto, E. R. Does external pressure explain recent results for molecular clouds? Mon. Not. R. Astron. Soc. 416, 710–714 (2011).

    MATH  ADS  Google Scholar 

  49. Ramírez-Galeano, L., Ballesteros-Paredes, J., Smith, R. J., Camacho, V. & Zamora-Avilés, M. Why most molecular clouds are gravitationally dominated. Mon. Not. R. Astron. Soc. 515, 2822–2836 (2022).

    Article  ADS  Google Scholar 

  50. Curtis-Lake, E. et al. Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2. Nat. Astron. 7, 622–632 (2023).

    Article  ADS  Google Scholar 

  51. Wouterloot, J. G. A. & Brand, J. IRAS sources beyond the solar circle. I. CO observations. Astron. Astrophys. Suppl. Ser. 80, 149–187 (1989).

    MATH  ADS  Google Scholar 

  52. Sun, Y. et al. A possible extension of the Scutum-Centaurus arm into the outer second quadrant. Astrophys. J. Lett. 798, L27 (2015).

    Article  MATH  ADS  Google Scholar 

  53. Li, H.-K. et al. Oxygen isotopic ratios toward molecular clouds in the Galactic disk. Res. Astron. Astrophys. 16, 47 (2016).

    Article  MATH  ADS  Google Scholar 

  54. Sun, Y. et al. Molecular clouds in the extreme outer Galaxy between l = 34.°75 to 45.°25. Astrophys. J. Suppl. Ser. 230, 17 (2017).

    Article  MATH  ADS  Google Scholar 

  55. Jackson, J. M. et al. The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey. Astrophys. J. Suppl. Ser. 163, 145–159 (2006).

    Article  MATH  ADS  Google Scholar 

  56. Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019).

    Article  ADS  Google Scholar 

  57. Graczyk, D. et al. A distance determination to the Small Magellanic Cloud with an accuracy of better than two percent based on late-type eclipsing binary stars. Astrophys. J. 904, 13 (2020).

    Article  MATH  ADS  Google Scholar 

  58. Rich, J. A. et al. A new cepheid distance measurement and method for NGC 6822. Astrophys. J. 794, 107 (2014).

    Article  MATH  ADS  Google Scholar 

  59. Whiting, M. T. DUCHAMP: a 3D source finder for spectral-line data. Mon. Not. R. Astron. Soc. 421, 3242–3256 (2012).

    Article  MATH  ADS  Google Scholar 

  60. Di Teodoro, E. M. & Fraternali, F. 3DBAROLO: a new 3D algorithm to derive rotation curves of galaxies. Mon. Not. R. Astron. Soc. 451, 3021–3033 (2015).

    Article  MATH  ADS  Google Scholar 

  61. Mangum, J. G. & Shirley, Y. L. How to calculate molecular column density. Publ. Astron. Soc. Pac. 127, 266 (2015).

    Article  MATH  ADS  Google Scholar 

  62. Tang, X. D. et al. Kinetic temperature of massive star forming molecular clumps measured with formaldehyde. Astron. Astrophys. 598, A30 (2017).

    Article  MATH  Google Scholar 

  63. Chira, R. A. et al. Characterization of infrared dark clouds. NH3 observations of an absorption-contrast selected IRDC sample. Astron. Astrophys. 552, A40 (2013).

    Article  MATH  Google Scholar 

  64. Fehér, O. et al. Ammonia emission in various star-forming environments: a pilot study of Planck galactic cold clumps. Astrophys. J. Suppl. Ser. 258, 17 (2022).

    Article  MATH  ADS  Google Scholar 

  65. Garden, R. P., Hayashi, M., Gatley, I., Hasegawa, T. & Kaifu, N. A spectroscopic study of the DR 21 outflow source. III. The CO line emission. Astrophys. J. 374, 540 (1991).

    Article  ADS  Google Scholar 

  66. Lacy, J. H., Sneden, C., Kim, H. & Jaffe, D. T. H2, CO, and dust absorption through cold molecular clouds. Astrophys. J. 838, 66 (2017).

    Article  ADS  Google Scholar 

  67. Fujii, K. et al. Dense molecular clumps associated with the Large Magellanic Cloud supergiant shells LMC 4 and LMC 5. Astrophys. J. 796, 123 (2014).

    Article  MATH  ADS  Google Scholar 

  68. Condon, J. J. Errors in elliptical Gaussian fits. Publ. Astron. Soc. Pac. 109, 166–172 (1997).

    Article  MATH  ADS  Google Scholar 

  69. Mueller, K. E., Shirley, Y. L., Evans, I., Neal, J. & Jacobson, H. R. The physical conditions for massive star formation: dust continuum maps and modeling. Astrophys. J. Suppl. Ser. 143, 469–497 (2002).

    Article  MATH  ADS  Google Scholar 

  70. Wouterloot, J. G. A. & Brand, J. IRAS sources beyond the solar circle. VII. The 12C/13C ratio in the far outer Galaxy. Astron. Astrophys. Suppl. Ser. 119, 439–457 (1996).

    Article  ADS  Google Scholar 

  71. Milam, S. N., Savage, C., Brewster, M. A., Ziurys, L. M. & Wyckoff, S. The 12C/13C isotope gradient derived from millimeter transitions of CN: the case for galactic chemical evolution. Astrophys. J. 634, 1126–1132 (2005).

    Article  ADS  Google Scholar 

  72. Sun, Y. et al. An improved method to measure 12C/13C and 14N/15N abundance ratios: revisiting CN isotopologues in the Galactic outer disc. Mon. Not. R. Astron. Soc. 527, 8151–8192 (2024).

    Article  MATH  ADS  Google Scholar 

  73. Szűcs, L., Glover, S. C. O. & Klessen, R. S. The 12CO/13CO ratio in turbulent molecular clouds. Mon. Not. R. Astron. Soc. 445, 4055–4072 (2014).

    Article  ADS  Google Scholar 

  74. Dickman, R. L. The ratio of carbon monoxide to molecular hydrogen in interstellar dark clouds. Astrophys. J. Suppl. Ser. 37, 407–427 (1978).

    Article  MATH  ADS  Google Scholar 

  75. Frerking, M. A., Langer, W. D. & Wilson, R. W. The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. Astrophys. J. 262, 590–605 (1982).

    Article  MATH  ADS  Google Scholar 

  76. Romano, D., Matteucci, F., Zhang, Z.-Y., Ivison, R. J. & Ventura, P. The evolution of CNO isotopes: the impact of massive stellar rotators. Mon. Not. R. Astron. Soc. 490, 2838–2854 (2019).

    Article  ADS  Google Scholar 

  77. Glover, S. C. O. & Clark, P. C. Star formation in metal-poor gas clouds. Mon. Not. R. Astron. Soc. 426, 377–388 (2012).

    Article  MATH  ADS  Google Scholar 

  78. Kauffmann, J., Pillai, T. & Goldsmith, P. F. Low virial parameters in molecular clouds: implications for high-mass star formation and magnetic fields. Astrophys. J. 779, 185 (2013).

    Article  MATH  ADS  Google Scholar 

  79. Meidt, S. E. et al. A model for the onset of self-gravitation and star formation in molecular gas governed by galactic forces. I. Cloud-scale gas motions. Astrophys. J. 854, 100 (2018).

    Article  ADS  Google Scholar 

  80. Zhang, Z.-Y. et al. Physical conditions of molecular gas in the Circinus galaxy multi-J CO and Ci 3PP0 observations. Astron. Astrophys. 568, A122 (2014).

    Article  MATH  Google Scholar 

  81. Papadopoulos, P. P. & Seaquist, E. R. The state of the molecular gas in a luminous starburst/Seyfert 2 Galaxy: NGC 1068 revisited. Astrophys. J. 516, 114–126 (1999).

    Article  MATH  ADS  Google Scholar 

  82. Elmegreen, B. G. Magnetic diffusion and ionization fractions in dense molecular clouds: the role of charged grains. Astrophys. J. 232, 729–739 (1979).

    Article  MATH  ADS  Google Scholar 

  83. Padovani, M. On the origin of cosmic-ray ionisation in star-forming regions. In Proc. Physics and Chemistry of Star Formation: The Dynamical ISM Across Time and Spatial Scales (eds O.-O., V. et al.) 237 (Kölner UniversitätsPublikationsServer, 2023).

  84. Crutcher, R. M. Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012).

    Article  ADS  Google Scholar 

  85. Ching, T. C. et al. An early transition to magnetic supercriticality in star formation. Nature 601, 49–52 (2022).

    Article  MATH  ADS  Google Scholar 

  86. Cao, Z. & Li, H.-b Turbulence in Zeeman measurements from molecular clouds. Astrophys. J. Lett. 946, L46 (2023).

    Article  MATH  ADS  Google Scholar 

  87. Basu, A. & Roy, S. Magnetic fields in nearby normal galaxies: energy equipartition. Mon. Not. R. Astron. Soc. 433, 1675–1686 (2013).

    Article  MATH  ADS  Google Scholar 

  88. Beck, R. Magnetic fields in the nearby spiral galaxy IC 342: a multi-frequency radio polarization study. Astron. Astrophys. 578, A93 (2015).

    Article  MATH  ADS  Google Scholar 

  89. Li, D., Kauffmann, J., Zhang, Q. & Chen, W. Massive quiescent cores in Orion: dynamical state revealed by high-resolution ammonia maps. Astrophys. J. Lett. 768, L5 (2013).

    Article  ADS  Google Scholar 

  90. Wang, K., Wang, Y. & Xu, F. Massive star formation starts in subvirial dense clumps unless resisted by strong magnetic fields. Astrophys. J. Lett. 974, L6 (2024).

    Article  Google Scholar 

  91. Koda, J., Sawada, T., Hasegawa, T. & Scoville, N. Z. The elongations and supersonic motions of molecular clouds. Astrophys. J. 638, 191–195 (2006).

    Article  MATH  ADS  Google Scholar 

  92. Tan, J. C., Krumholz, M. R. & McKee, C. F. Equilibrium star cluster formation. Astrophys. J. Lett. 641, L121–L124 (2006).

    Article  MATH  ADS  Google Scholar 

  93. Padoan, P., Pan, L., Haugbølle, T., & Nordlund, Å. Supernova driving. I. The origin of molecular cloud turbulence. Astrophys. J. 822, 11 (2016).

    Article  MATH  ADS  Google Scholar 

  94. Aouad, C. J., James, P. A. & Chilingarian, I. V. Coupling local to global star formation in spiral galaxies: the effect of differential rotation. Mon. Not. R. Astron. Soc. 496, 5211–5226 (2020).

    Article  MATH  ADS  Google Scholar 

  95. Lee, E. J., Miville-Deschênes, M.-A. & Murray, N. W. Observational evidence of dynamic star formation rate in Milky Way giant molecular clouds. Astrophys. J. 833, 229 (2016).

    Article  ADS  Google Scholar 

  96. Elia, D. et al. The star formation rate of the Milky Way as seen by Herschel. Astrophys. J. 941, 162 (2022).

    Article  MATH  ADS  Google Scholar 

  97. Lada, C. J. Star formation: from OB associations to protostars. In Proc. Symposium – International Astronomical Union Vol. 115 (eds P., M. and Jugaku, J.) 1–18 (Cambridge Univ. Press, 1987).

  98. Hansen, C. E., Klein, R. I., McKee, C. F. & Fisher, R. T. Feedback effects on low-mass star formation. Astrophys. J. 747, 22 (2012).

    Article  MATH  ADS  Google Scholar 

  99. Li, H. et al. Outflows and bubbles in Taurus: star-formation feedback sufficient to maintain turbulence. Astrophys. J. Suppl. Ser. 219, 20 (2015).

    Article  MATH  ADS  Google Scholar 

  100. Sun, Y. et al. Discovery of H2O, CH3OH, and OH masers in the extreme outer Galaxy. Astrophys. J. 869, 148 (2018).

    Article  MATH  ADS  Google Scholar 

  101. Shirley, Y. L. The critical density and the effective excitation density of commonly observed molecular dense gas tracers. Publ. Astron. Soc. Pac. 127, 299 (2015).

    Article  MATH  ADS  Google Scholar 

  102. Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013).

    Article  MATH  ADS  Google Scholar 

  103. Draine, B. T. Physics of the Interstellar and Intergalactic Medium Vol. 19 (Princeton Univ. Press, 2010).

  104. Oka, T. et al. Statistical properties of molecular clouds in the Galactic Center. Astrophys. J. 562, 348–362 (2001).

    Article  MATH  ADS  Google Scholar 

  105. Lin, L. Dataset for the paper — Inadequate turbulent support in low-metallicity molecular clouds. figshare https://doi.org/10.6084/m9.figshare.27282924 (2024).

Download references

Acknowledgements

This work is supported by the National Key Research & Development (R&D) Programme of China (Grant No. 2023YFA1608204). Z.-Y.Z., L. Lin, Yichen Sun and G.L. acknowledge the support of the National Natural Science Foundation of China (NSFC; Grant Nos. 12173016 and 12041305), science research grants from the China Manned Space Project (Grant Nos. CMS-CSST-2021-A08 and CMS-CSST-2021-A07) and the Programme for Innovative Talents, Entrepreneur in Jiangsu. This work also benefited from the International Space Science Institute (ISSI/ISSI-BJ) in Bern and Beijing, thanks to funding for the team ‘Chemical abundances in the ISM: the litmus test of stellar IMF variations in galaxies across cosmic time’ (PIs D.R. and Z.-Y.Z.). J. Wang gives thanks for the support of the NSFC (Grant No. 12173067) and the Guangxi Talent Programme (Highland of Innovation Talents). Y.G. is supported by the Strategic Priority Research Programme of the Chinese Academy of Sciences (Grant No. XDB0800301). Yan Sun is supported by the Youth Innovation Promotion Association, CAS (Grant No. 2022085), and the Light of West China Programme (Grant No. xbzg-zdsys-202212). T.G.B. acknowledges support from the Leading Innovation and Entrepreneurship Team of Zhejiang Province of China (Grant No. 2023R01008). D.R. thanks the Italian National Institute for Astrophysics for funding the project ‘An in-depth theoretical study of CNO element evolution in galaxies’ through Finanziamento della Ricerca Fondamentale, Theory Grant Fu. Ob. 1.05.12.06.08. D.L. is a New Cornerstone investigator. H.B.L. is supported by the National Science and Technology Council of Taiwan (Grant Nos. 111-2112-M-110-022-MY3 and 113-2112-M-110-022-MY3). K.Q. acknowledges support from the NSFC (Grant Nos. 12425304 and U1731237) and the National Key R&D Programme of China (Grant Nos. 2023YFA1608204 and 2022YFA1603100). C.-W.T. is supported by the NSFC (Grant No. 11988101). J. Wu gives thanks for support from the NSFC (Grant No. 12041302) and the Tianchi Talent Programme of Xinjiang Uygur Autonomous Region. S.F. acknowledges support from the NSFC (Grant No. 12373023), a starting grant at Xiamen University and the presidential excellence fund at Xiamen University (Grant No. 20720220024). This work is based on observations carried out under Projects 031-17 and 102-22 with the IRAM 30 m telescope, Projects ADS/JAO.ALMA#2013.1.00652.S, ADS/JAO.ALMA#2015.1.00581.S, ADS/JAO.ALMA#2019.1.01641.S and ADS/JAO.ALMA#2021.2.00175.S with ALMA, and Project Lin_L_22B_1 with SMT. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The Heinrich Hertz SMT is operated by the Arizona Radio Observatory, which is part of Steward Observatory at the University of Arizona.

Author information

Authors and Affiliations

Authors

Contributions

L. Lin led the project, conducted the data reduction and analyses, and drafted proposals and the paper. Z.-Y.Z. initiated and supervised the whole project and improved the paper. J. Wang helped with the data analysis and validating tests. P.P.P. instructed the general virial analysis and outlined the larger theoretical picture. Yong Shi helped extend this work to low-metallicity dwarf galaxies. Y.G. helped improve the paper and was involved in discussions. Yan Sun provided the initial catalogue and helped with calculating the cloud distances. Yichen Sun, T.G.B. and D.R. helped with the abundance ratios. D.L., H.B.L. and K.Q. helped with discussions on magnetic fields. B.Z. helped with validating the distance measurements. L. Liu, G.L., C.-W.T., J. Wu and S.F. helped with discussions and in improving the paper. All authors reviewed the paper and were involved in discussions, telescope proposals and observations on which the raw data and the analyses were based.

Corresponding authors

Correspondence to Zhi-Yu Zhang or Junzhi Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1–11.

Source data

Source Data Figs. 1–3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Zhang, ZY., Wang, J. et al. Inadequate turbulent support in low-metallicity molecular clouds. Nat Astron 9, 406–416 (2025). https://doi.org/10.1038/s41550-024-02440-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-024-02440-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing