Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Robust genome and cell engineering via in vitro and in situ circularized RNAs

Abstract

Circularization can improve RNA persistence, yet simple and scalable approaches to achieve this are lacking. Here we report two methods that facilitate the pursuit of circular RNAs (cRNAs): cRNAs developed via in vitro circularization using group II introns, and cRNAs developed via in-cell circularization by the ubiquitously expressed RtcB protein. We also report simple purification protocols that enable high cRNA yields (40–75%) while maintaining low immune responses. These methods and protocols facilitate a broad range of applications in stem cell engineering as well as robust genome and epigenome targeting via zinc finger proteins and CRISPR–Cas9. Notably, cRNAs bearing the encephalomyocarditis internal ribosome entry enabled robust expression and persistence compared with linear capped RNAs in cardiomyocytes and neurons, which highlights the utility of cRNAs in these non-dividing cells. We also describe genome targeting via deimmunized Cas9 delivered as cRNA and a long-range multiplexed protein engineering methodology for the combinatorial screening of deimmunized protein variants that enables compatibility between persistence of expression and immunogenicity in cRNA-delivered proteins. The cRNA toolset will aid research and the development of therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering ocRNAs and icRNAs.
Fig. 2: Optimization and characterization of ocRNAs and icRNAs.
Fig. 3: Assessing persistence and activity of ocRNAs and icRNAs.
Fig. 4: Application of icRNAs and ocRNAs to ZF-mediated genome and epigenome targeting.
Fig. 5: LORAX protein engineering methodology to screen progressively deimmunized Cas9 variants.
Fig. 6: Validation of LORAX screen identified Cas9 variants for deimmunization, and genome and epigenome targeting via delivery as icRNAs and ocRNAs.

Similar content being viewed by others

Data availability

All key reagents will be made available via Addgene. Source data are provided with this paper.

Code availability

The code is available at https://github.com/natepalmer/lorax.

References

  1. Karikó, K., Muramatsu, H., Ludwig, J. & Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39, e142 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Presnyak, V. et al. Codon optimality is a major determinant of mRNA stability. Cell 160, 1111–1124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kuhn, A. N. et al. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 17, 961–971 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Holtkamp, S. et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108, 4009–4017 (2006).

  5. Orlandini von Niessen, A. G. et al. Improving mRNA-based therapeutic gene delivery by expression-augmenting 3′ UTRs identified by cellular library screening. Mol. Ther. 27, 824–836 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Petkovic, S. & Müller, S. RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 43, 2454–2465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Müller, S. & Appel, B. In vitro circularization of RNA. RNA Biol. 14, 1018–1027 (2017).

    Article  PubMed  Google Scholar 

  9. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abe, N. et al. Rolling circle translation of circular RNA in living human cells. Sci. Rep. 5, 16435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan, X. et al. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat. Commun. 13, 3751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Jeck, W. R. & Sharpless, N. E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 32, 453–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kameda, S., Ohno, H. & Saito, H. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac1252 (2023).

  15. Chen, R. et al. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01393-0 (2022).

  16. Li, A. et al. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol. Ther. 28, 1432–1441 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Corbett, K. S. et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saunders, K. O. et al. Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature 594, 553–559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomas, S. J. et al. Efficacy and safety of the BNT162b2 mRNA COVID-19 vaccine in participants with a history of cancer: subgroup analysis of a global phase 3 randomized clinical trial. Vaccine https://doi.org/10.1016/j.vaccine.2021.12.046 (2021).

  22. Zinsli, L. V., Stierlin, N., Loessner, M. J. & Schmelcher, M. Deimmunization of protein therapeutics—recent advances in experimental and computational epitope prediction and deletion. Comput. Struct. Biotechnol. J. 19, 315–329 (2021).

  23. McNeil, B. A., Simon, D. M. & Zimmerly, S. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani. Nucleic Acids Res. 42, 1959–1969 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pyle, A. M. Group II intron self-splicing. Annu. Rev. Biophys. 45, 183–205 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Zimmerly, S. & Semper, C. Evolution of group II introns. Mob. DNA 6, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen, C. Y. & Sarnow, P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268, 415–417 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Jang, S. K. et al. A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643 (1988).

  28. Aitken, C. E. & Lorsch, J. R. A mechanistic overview of translation initiation in eukaryotes. Nat. Struct. Mol. Biol. 19, 568–576 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Alkemar, G. & Nygård, O. Secondary structure of two regions in expansion segments ES3 and ES6 with the potential of forming a tertiary interaction in eukaryotic 40S ribosomal subunits. RNA 10, 403–411 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhat, P. et al. The beta hairpin structure within ribosomal protein S5 mediates interplay between domains II and IV and regulates HCV IRES function. Nucleic Acids Res. 43, 2888–2901 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, J. et al. Pervasive functional translation of noncanonical human open reading frames. Science 367, 1140–1146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hershey, J. W. B., Sonenberg, N. & Mathews, M. B. Principles of translational control: an overview. Cold Spring Harb. Perspect. Biol. 4, a011528 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bradrick, S. S., Dobrikova, E. Y., Kaiser, C., Shveygert, M. & Gromeier, M. Poly(A)-binding protein is differentially required for translation mediated by viral internal ribosome entry sites. RNA 13, 1582–1593 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Machida, K. et al. Dynamic interaction of poly(A)-binding protein with the ribosome. Sci. Rep. 8, 17435 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mailliot, J. & Martin, F. Viral internal ribosomal entry sites: four classes for one goal. Wiley Interdiscip. Rev. 9, e1458 (2018).

    Article  Google Scholar 

  36. Imai, S., Kumar, P., Hellen, C. U. T., D’Souza, V. M. & Wagner, G. An accurately preorganized IRES RNA structure enables eIF4G capture for initiation of viral translation. Nat. Struct. Mol. Biol. 23, 859–864 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Piao, X. et al. Double-stranded RNA reduction by chaotropic agents during in vitro transcription of messenger RNA. Mol. Ther. Nucleic Acids 29, 618–624 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baiersdörfer, M. et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol. Ther. Nucleic Acids 15, 26–35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Plank, T.-D. M., Whitehurst, J. T. & Kieft, J. S. Cell type specificity and structural determinants of IRES activity from the 5′ leaders of different HIV-1 transcripts. Nucleic Acids Res. 41, 6698–6714 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl. 51, 8529–8533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Zou, J. et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5, 97–110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Maxwell, K. N. & Breslow, J. L. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl Acad. Sci. USA 101, 7100–7105 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Thakore, P. I. et al. RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors. Nat. Commun. 9, 1674 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He, N.-Y. et al. Lowering serum lipids via PCSK9-targeting drugs: current advances and future perspectives. Acta Pharmacol. Sin. 38, 301–311 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ridker, P. M. et al. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N. Engl. J. Med. 376, 1527–1539 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ. Res. 115, 488–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Amabile, A. et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167, 219–232.e14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nuñez, J. K. et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184, 2503–2519.e17 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Moreno, A. M. et al. Author correction: immune-orthogonal orthologues of AAV capsids and of Cas9 circumvent the immune response to the administration of gene therapy. Nat. Biomed. Eng. 3, 842 (2019).

    Article  PubMed  Google Scholar 

  57. Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jawa, V. et al. T-cell dependent immunogenicity of protein therapeutics pre-clinical assessment and mitigation–updated consensus and review 2020. Front. Immunol. 11, 1301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Moghadam, F. et al. Synthetic immunomodulation with a CRISPR super-repressor in vivo. Nat. Cell Biol. 22, 1143–1154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hakim, C. H. et al. Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models. Nat. Commun. 12, 6769 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ferdosi, S. R. et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat. Commun. 10, 1842 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Allen, B. D., Nisthal, A. & Mayo, S. L. Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles. Proc. Natl Acad. Sci. USA 107, 19838–19843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun, M. G. F., Seo, M.-H., Nim, S., Corbi-Verge, C. & Kim, P. M. Protein engineering by highly parallel screening of computationally designed variants. Sci. Adv. 2, e1600692 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cao, J. et al. High-throughput 5′ UTR engineering for enhanced protein production in non-viral gene therapies. Nat. Commun. 12, 4138 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Charles, E. J. et al. Engineering improved Cas13 effectors for targeted post-transcriptional regulation of gene expression. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.445687 (2021).

  70. Griswold, K. E. & Bailey-Kellogg, C. Design and engineering of deimmunized biotherapeutics. Curr. Opin. Struct. Biol. 39, 79–88 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Doud, M. B., Lee, J. M. & Bloom, J. D. How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin. Nat. Commun. 9, 1386 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gasiunas, G. et al. A catalogue of biochemically diverse CRISPR-Cas9 orthologs. Nat. Commun. 11, 5512 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Takeuchi, N., Wolf, Y. I., Makarova, K. S. & Koonin, E. V. Nature and intensity of selection pressure on CRISPR-associated genes. J. Bacteriol. 194, 1216–1225 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Andreatta, M. & Nielsen, M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 32, 511–517 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Nielsen, M. et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12, 1007–1017 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Osipovitch, D. C. et al. Design and analysis of immune-evading enzymes for ADEPT therapy. Protein Eng. Des. Sel. 25, 613–623 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Choi, Y., Verma, D., Griswold, K. E. & Bailey-Kellogg, C. in Computational Protein Design (ed. Samish, I.) 375–398 (Springer New York, 2017).

  78. King, C. et al. Removing T-cell epitopes with computational protein design. Proc. Natl Acad. Sci. USA 111, 8577–8582 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mazor, R. et al. Elimination of murine and human T-cell epitopes in recombinant immunotoxin eliminates neutralizing and anti-drug antibodies in vivo. Cell. Mol. Immunol. 14, 432–442 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rang, F. J., Kloosterman, W. P. & de Ridder, J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 19, 90 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schubert, B. et al. Population-specific design of de-immunized protein biotherapeutics. PLoS Comput. Biol. 14, e1005983 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liao, S., Tammaro, M. & Yan, H. Enriching CRISPR-Cas9 targeted cells by co-targeting the HPRT gene. Nucleic Acids Res. 43, e134 (2015).

    PubMed  PubMed Central  Google Scholar 

  84. Yang, F. et al. HPRT1 activity loss is associated with resistance to thiopurine in ALL. Oncotarget 9, 2268–2278 (2018).

    Article  PubMed  Google Scholar 

  85. Meini, M.-R., Tomatis, P. E., Weinreich, D. M. & Vila, A. J. Quantitative description of a protein fitness landscape based on molecular features. Mol. Biol. Evol. 32, 1774–1787 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat. Biotechnol. 37, 224–226 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ninkovic, T. et al. Identification of O-glycosylated decapeptides within the MUC1 repeat ___domain as potential MHC class I (A2) binding epitopes. Mol. Immunol. 47, 131–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Etschel, J. K. et al. HIV-1 mRNA electroporation of PBMC: a simple and efficient method to monitor T-cell responses against autologous HIV-1 in HIV-1-infected patients. J. Immunol. Methods 380, 40–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Van Camp, K. et al. Efficient mRNA electroporation of peripheral blood mononuclear cells to detect memory T cell responses for immunomonitoring purposes. J. Immunol. Methods 354, 1–10 (2010).

    Article  PubMed  Google Scholar 

  91. Moreno, A. M. et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation. Mol. Ther. 28, 1931 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Litke, J. L. & Jaffrey, S. R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol. 37, 667–675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, Y. G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell 67, 228–238.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, Y. G. et al. N6-Methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Abe, B. T. et al. Circular RNA migration in agarose gel electrophoresis. Mol. Cell 82, 1768–1777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, C.-K. et al. Structured elements drive extensive circular RNA translation. Mol. Cell 81, 4300–4318.e13 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Meyer, K. D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Weingarten-Gabbay, S. et al. Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes. Science 351, aad4939 (2016).

    Article  PubMed  Google Scholar 

  101. Sample, P. J. et al. Human 5′ UTR design and variant effect prediction from a massively parallel translation assay. Nat. Biotechnol. 37, 803–809 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stiffler, M. A. et al. Protein structure from experimental evolution. Cell Syst. 10, 15–24.e5 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Green, A. G. et al. Large-scale discovery of protein interactions at residue resolution using co-evolution calculated from genomic sequences. Nat. Commun. 12, 1396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Saylor, K., Gillam, F., Lohneis, T. & Zhang, C. Designs of antigen structure and composition for improved protein-based vaccine efficacy. Front. Immunol. 11, 283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Joglekar, A. V. et al. T cell antigen discovery via signaling and antigen-presenting bifunctional receptors. Nat. Methods 16, 191–198 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lian, X. et al. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions. Nat. Protoc. 8, 162–175 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Kumar, A. et al. Mechanical activation of noncoding-RNA-mediated regulation of disease-associated phenotypes in human cardiomyocytes. Nat. Biomed. Eng. 3, 137–146 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tohyama, S. et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12, 127–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Belliveau, N. M. et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids 1, e37 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Mali lab for discussions, advice and help with experiments. We also thank T. Long, S. Brightman and A. Sutherland for their advice on performing the ELISpot assay. This work was generously supported by UCSD Institutional Funds, NIH grants (R01HG012351, OT2OD032742, R01NS131560, U54CA274502 and DP2NS111507), Department of Defense Grant (W81XWH-22-1-0401), a Longevity Impetus Grant from Norn Group, a UC San Diego Gene Therapy Initiative Grant (GTI-2024-018), and an American Heart Association Postdoctoral Fellowship (AHA 916973). This publication includes data generated at the UC San Diego IGM Genomics Center utilizing an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (S10 OD026929). This work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (grant ECCS-2025752). Some schematics were created using BioRender.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: M.T., N.P., A.K. and P.M. Experiments: M.T., N.P., A.K., A.D., H.K., S.H., E.F., M.W., C.H., Y.X., K.M., A.P., J.R., A.S., S.N. and P.M. Computational analyses: M.T. and N.P. Design: M.T., N.P., W.L.C., E.J.K. and P.M. Writing: M.T., N.P., A.K. and P.M. with input from all authors.

Corresponding author

Correspondence to Prashant Mali.

Ethics declarations

Competing interests

The authors have filed patents based on this work. P.M. is a scientific co-founder of Shape Therapeutics, Navega Therapeutics, Pi Bio, Boundless Biosciences and Engine Biosciences. The terms of these arrangements have been reviewed and approved by the University of California, San Diego, in accordance with its conflict-of-interest policies. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures and Tables.

Reporting Summary

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, M., Palmer, N., Dailamy, A. et al. Robust genome and cell engineering via in vitro and in situ circularized RNAs. Nat. Biomed. Eng 9, 109–126 (2025). https://doi.org/10.1038/s41551-024-01245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-024-01245-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research