Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Panoramic photoacoustic computed tomography with learning-based classification enhances breast lesion characterization

Abstract

Breast cancer diagnosis is crucial due to the high prevalence and mortality rate associated with the disease. However, mammography involves ionizing radiation and has compromised sensitivity in radiographically dense breasts, ultrasonography lacks specificity and has operator-dependent image quality, and magnetic resonance imaging faces high cost and patient exclusion. Photoacoustic computed tomography (PACT) offers a promising solution by combining light and ultrasound for high-resolution imaging that detects tumour-related vasculature changes. Here we introduce a workflow using panoramic PACT for breast lesion characterization, offering detailed visualization of vasculature irrespective of breast density. Analysing PACT features of 78 breasts in 39 patients, we develop learning-based classifiers to distinguish between normal and suspicious tissue, achieving a maximum area under the receiver operating characteristic curve of 0.89, which is comparable with that of conventional imaging standards. We further differentiate malignant and benign lesions using 13 features. Finally, we developed a learning-based model to segment breast lesions. Our study identifies PACT as a non-invasive and sensitive imaging tool for breast lesion evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patient breast PACT workflow.
Fig. 2: Representative breast images from PACT and conventional imaging modalities.
Fig. 3: Representative PACT images of breasts with suspicious lesions and follow-up assessments.
Fig. 4: Feature comparison of HQs and lesion quadrants.
Fig. 5: Classifier training, evaluation and feature selection workflow.
Fig. 6: Lesion localization and segmentation workflow.

Similar content being viewed by others

Data availability

The calculated features for all patients and the classification results are available on Figshare at https://doi.org/10.6084/m9.figshare.28675031 (ref. 81). The rest of the main data supporting the results in this study is available within the article and its Supplementary Information. The PA data are available for research purposes from the corresponding author on reasonable request.

Code availability

The code for data analysis is available on Figshare at https://doi.org/10.6084/m9.figshare.28675031 (ref. 81). The original code for MedSAM is available on GitHub82. We applied this code to our dataset with the customized settings described in Methods. We have opted not to make reconstruction and post-processing codes (described in detail in Methods and ref. 74) publicly available because the code is proprietary and used for other projects.

References

  1. Feuer, E. J. et al. The lifetime risk of developing breast cancer. J. Natl Cancer Inst. 85, 892–897 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Hockenberger, S. J. Fibrocystic breast disease: every woman is at risk. Plast. Aesthet. Nurs. 13, 37–40 (1993).

    CAS  Google Scholar 

  3. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA: Cancer J. Clin. 71, 7–33 (2021).

    PubMed  Google Scholar 

  4. Spak, D. A., Plaxco, J. S., Santiago, L., Dryden, M. J. & Dogan, B. E. BI-RADS fifth edition: a summary of changes. Diagn. Interv. Imaging 98, 179–190 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Pesapane, F. et al. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med. Oncol. 37, 29 (2020).

    Article  PubMed  Google Scholar 

  6. Popli, M. B., Teotia, R., Narang, M. & Krishna, H. Breast positioning during mammography: mistakes to be avoided. Breast Cancer 8, 119–124 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Kolb, T. M., Lichy, J. & Newhouse, J. H. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225, 165–175 (2002).

    Article  PubMed  Google Scholar 

  8. Berg, W. A. et al. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology 233, 830–849 (2004).

    Article  PubMed  Google Scholar 

  9. von Euler-Chelpin, M., Lillholm, M., Vejborg, I., Nielsen, M. & Lynge, E. Sensitivity of screening mammography by density and texture: a cohort study from a population-based screening program in Denmark. Breast Cancer Res. 21, 111 (2019).

    Article  Google Scholar 

  10. Brem, R. F., Lenihan, M. J., Lieberman, J. & Torrente, J. Screening breast ultrasound: past, present, and future. Am. J. Roentgenol. 204, 234–240 (2015).

    Article  Google Scholar 

  11. Lehman, C. D. et al. Cancer yield of mammography, MR, and US in high-risk women: prospective multi-institution breast cancer screening study. Radiology 244, 381–388 (2007).

    Article  PubMed  Google Scholar 

  12. Corsetti, V. et al. Breast screening with ultrasound in women with mammography-negative dense breasts: evidence on incremental cancer detection and false positives, and associated cost. Eur. J. Cancer 44, 539–544 (2008).

    Article  PubMed  Google Scholar 

  13. Raza, S., Chikarmane, S. A., Neilsen, S. S., Zorn, L. M. & Birdwell, R. L. BI-RADS 3, 4, and 5 lesions: value of US in management—follow-up and outcome. Radiology 248, 773–781 (2008).

    Article  PubMed  Google Scholar 

  14. Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499–502 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Sigrist, R. M. S., Liau, J., Kaffas, A. E., Chammas, M. C. & Willmann, J. K. Ultrasound elastography: review of techniques and clinical applications. Theranostics 7, 1303–1329 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Perazella, M. A. Gadolinium-contrast toxicity in patients with kidney disease: nephrotoxicity and nephrogenic systemic fibrosis. Curr. Drug Saf. 3, 67–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Eshed, I., Althoff, C. E., Hamm, B. & Hermann, K.-G. A. Claustrophobia and premature termination of magnetic resonance imaging examinations. J. Magn. Reson. Imaging 26, 401–404 (2007).

    Article  PubMed  Google Scholar 

  18. Faris, O. P. & Shein, M. J. Government viewpoint: US Food & Drug Administration: pacemakers, ICDs and MRI. Pacing Clin. Electrophysiol. 28, 268–269 (2005).

    Article  PubMed  Google Scholar 

  19. Leff, D. R. et al. Diffuse optical imaging of the healthy and diseased breast: a systematic review. Breast Cancer Res. Treat. 108, 9–22 (2008).

    Article  PubMed  Google Scholar 

  20. Lin, L. & Wang, L. V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 19, 365–384 (2022).

    Article  PubMed  Google Scholar 

  21. Wang, L. V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 3, 503–509 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, L. et al. Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun. 9, 2352 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lin, L. et al. Photoacoustic computed tomography of breast cancer in response to neoadjuvant chemotherapy. Adv. Sci. https://doi.org/10.1002/advs.202003396 (2021).

  24. Lin, L. et al. High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation. Nat. Commun. 12, 882 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han, S., Lee, H., Kim, C. & Kim, J. Review on multispectral photoacoustic analysis of cancer: thyroid and breast. Metabolites 12, 382 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dantuma, M. et al. Fully three-dimensional sound speed-corrected multi-wavelength photoacoustic breast tomography. Preprint at https://arxiv.org/abs/2308.06754 (2023).

  27. Weidner, N., Semple, J. P., Welch, W. R. & Folkman, J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N. Engl. J. Med. 324, 1–8 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Schneider, B. P. & Miller, K. D. Angiogenesis of breast cancer. J. Clin. Oncol. 23, 1782–1790 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Reynolds, A. R. et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat. Med. 15, 392–400 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Vaupel, P., Mayer, A., Briest, S. & Höckel, M. in Oxygen Transport to Tissue XXVI (eds. Okunieff, P. et al.) 333–342 (Springer, 2005); https://doi.org/10.1007/0-387-26206-7_44

  31. Gilkes, D. M. & Semenza, G. L. Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol. 9, 1623–1636 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ermilov, S. A. et al. Laser optoacoustic imaging system for detection of breast cancer. J. Biomed. Opt. 14, 024007 (2009).

    Article  PubMed  Google Scholar 

  35. Li, X., Heldermon, C. D., Yao, L., Xi, L. & Jiang, H. High resolution functional photoacoustic tomography of breast cancer. Med. Phys. 42, 5321–5328 (2015).

    Article  PubMed  Google Scholar 

  36. Heijblom, M. et al. Photoacoustic image patterns of breast carcinoma and comparisons with magnetic resonance imaging and vascular stained histopathology. Sci. Rep. 5, 11778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schoustra, S. M. et al. Imaging breast malignancies with the Twente Photoacoustic Mammoscope 2. PLoS ONE 18, e0281434 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Menezes, G. L. G. et al. Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging. Radiology 288, 355–365 (2018).

    Article  PubMed  Google Scholar 

  39. Neuschler, E. I. et al. A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists. Radiology 287, 398–412 (2018).

    Article  PubMed  Google Scholar 

  40. Dogan, B. E. et al. Optoacoustic imaging and gray-scale US features of breast cancers: correlation with molecular subtypes. Radiology 292, 564–572 (2019).

    Article  PubMed  Google Scholar 

  41. Nyayapathi, N. et al. Photoacoustic dual-scan mammoscope: results from 38 patients. Biomed. Opt. Express 12, 2054–2063 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Abeyakoon, O. et al. An optoacoustic imaging feature set to characterise blood vessels surrounding benign and malignant breast lesions. Photoacoustics https://doi.org/10.1016/j.pacs.2022.100383 (2022).

  43. Zheng, W. et al. Deep learning enhanced volumetric photoacoustic imaging of vasculature in human. Adv. Sci. 10, 2301277 (2023).

    Article  Google Scholar 

  44. Rodrigues, J. et al. Machine learning enabled photoacoustic spectroscopy for noninvasive assessment of breast tumor progression in vivo: a preclinical study. ACS Sens. 9, 589–601 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, G. et al. Deep learning combined with attention mechanisms to assist radiologists in enhancing breast cancer diagnosis: a study on photoacoustic imaging. Biomed. Opt. Express 15, 4689–4704 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Center for Devices and Radiological Health. Imagio Breast Imaging System—P200003 (FDA, 2021).

  47. Pereira, R. et al. Evaluation of the accuracy of mammography, ultrasound and magnetic resonance imaging in suspect breast lesions. Clinics 75, e1805 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fitzjohn, J., Zhou, C. & Chase, J. G. Critical assessment of mammography accuracy. IFAC-PapersOnLine 56, 5620–5625 (2023).

    Article  Google Scholar 

  49. Park, A. Y. et al. An innovative ultrasound technique for evaluation of tumor vascularity in breast cancers: superb micro-vascular imaging. J. Breast Cancer 19, 210–213 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chang, Y.-C., Huang, Y.-H., Huang, C.-S. & Chang, R.-F. Vascular morphology and tortuosity analysis of breast tumor inside and outside contour by 3-D power Doppler ultrasound. Ultrasound Med. Biol. 38, 1859–1869 (2012).

    Article  PubMed  Google Scholar 

  51. Park, A. Y. et al. A prospective study on the value of ultrasound microflow assessment to distinguish malignant from benign solid breast masses: association between ultrasound parameters and histologic microvessel densities. Korean J. Radiol. 20, 759–772 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hintze, J. L. & Nelson, R. D. Violin plots: a box plot-density trace synergism. Am. Stat. 52, 181–184 (1998).

    Article  Google Scholar 

  53. Good, P. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses (Springer Science & Business Media, 2013).

  54. Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).

    Article  Google Scholar 

  55. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016); https://doi.org/10.1145/2939672.2939785

  56. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  57. Ma, J. et al. Segment anything in medical images. Nat. Commun. 15, 654 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, C., Pineda, F., Hormuth, D. A. II, Karczmar, G. S. & Yankeelov, T. E. Quantitative analysis of vascular properties derived from ultrafast DCE-MRI to discriminate malignant and benign breast tumors. Magn. Reson. Med. 81, 2147–2160 (2019).

    Article  PubMed  Google Scholar 

  59. Weidner, N. Intratumor microvessel density as a prognostic factor in cancer. Am. J. Pathol. 147, 9–19 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–R61 (2013).

    Article  PubMed  Google Scholar 

  62. Li, L. et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat. Biomed. Eng. 1, 0071 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fenner, J. et al. Macroscopic stiffness of breast tumors predicts metastasis. Sci. Rep. 4, 5512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ramião, N. G. et al. Biomechanical properties of breast tissue, a state-of-the-art review. Biomech. Model. Mechanobiol. 15, 1307–1323 (2016).

    Article  PubMed  Google Scholar 

  65. Berg, W. A. et al. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA 299, 2151–2163 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sardanelli, F. et al. Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrast-enhanced magnetic resonance imaging (the High Breast Cancer Risk Italian 1 Study): final results. Invest. Radiol. 46, 94–105 (2011).

    Article  PubMed  Google Scholar 

  67. Shen, S. et al. A multi-centre randomised trial comparing ultrasound vs mammography for screening breast cancer in high-risk Chinese women. Br. J. Cancer 112, 998–1004 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo, R., Lu, G., Qin, B. & Fei, B. Ultrasound imaging technologies for breast cancer detection and management: a review. Ultrasound Med. Biol. 44, 37–70 (2018).

    Article  PubMed  Google Scholar 

  69. Devolli-Disha, E., Manxhuka-Kërliu, S., Ymeri, H. & Kutllovci, A. Comparative accuracy of mammography and ultrasound in women with breast symptoms according to age and breast density. Biomol. Biomed. 9, 131–136 (2009).

    Google Scholar 

  70. Hanley, J. A. & McNeil, B. J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143, 29–36 (1982).

    Article  CAS  PubMed  Google Scholar 

  71. Qian, X. et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning. Nat. Biomed. Eng. 5, 522–532 (2021).

    Article  PubMed  Google Scholar 

  72. Witowski, J. et al. Improving breast cancer diagnostics with deep learning for MRI. Sci. Transl. Med. 14, eabo4802 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. American National Standards Institute. ANSI Z136.1-2014—American National Standard for Safe Use of Lasers. (Laser Institute of America, 2014).

  74. Xu, M. & Wang, L. V. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71, 016706 (2005).

    Article  Google Scholar 

  75. Frangi, A. F., Niessen, W. J., Vincken, K. L. & Viergever, M. A. Multiscale vessel enhancement filtering. In Proc. Medical Image Computing and Computer-Assisted Intervention (eds Wells, W. M. et al.) 130–137 (Springer, 1998).

  76. Cho, S., Baik, J., Managuli, R. & Kim, C. 3D PHOVIS: 3D photoacoustic visualization studio. Photoacoustics 18, 100168 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lam, L., Lee, S. W. & Suen, C. Y. Thinning methodologies—a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 869–885 (1992).

    Article  Google Scholar 

  78. Tong, X. et al. Non-invasive 3D photoacoustic tomography of angiographic anatomy and hemodynamics of fatty livers in rats. Adv. Sci. 10, 2205759 (2023).

    Article  CAS  Google Scholar 

  79. Hu, M.-K. Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962).

    Article  Google Scholar 

  80. Thirion, J.-P. Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2, 243–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Tong, X. & Liu, C. Panoramic photoacoustic computed tomography with learning-based classification and segmentation enhances breast lesion characterization. Datasets. figshare https://doi.org/10.6084/m9.figshare.28675031 (2025).

  82. Ma, J. et al. MedSAM: segment anything model for medical image analysis. Source code. Github https://github.com/bowang-lab/MedSAM (2023).

Download references

Acknowledgements

We thank Y. Aborahama and G. Zhao for machine-learning-related discussion, and R. Nelson, D. Schmolze and L. Vora for their interpretation of the radiology findings. This project has been made possible in part by National Institutes of Health grants R35 CA220436 (Outstanding Investigator Award), R01 CA282505, U01 EB029823 and R01 EB028277. Y.Z. was sponsored by the National Institutes of Health grant K99 EB035645. C.Z.L. was sponsored by the National Institutes of Health grants NIGMS T32 GM008042 and NIGMS T32 GM152342.

Author information

Authors and Affiliations

Authors

Contributions

L.V.W., L.D.Y., L.L.L., L.L. and X.T. conceived and designed the study. X.T., L.L. and R.C. constructed the hardware system. Y.Z. constructed the control program. P.H. and X.T. developed the software system and the reconstruction algorithm. X.T., C.Z.L., Y.L. and L.L. performed the experiments. X.T., C.Z.L., Y.L., R.C. and J.Z. analysed the data. L.D.Y., L.L.L., M.I., J.D., S.D.S., J.T. and A.K. guided the patient study. L.V.W. supervised the project. All authors contributed to writing the paper.

Corresponding author

Correspondence to Lihong V. Wang.

Ethics declarations

Competing interests

L.V.W. has a financial interest in Microphotoacoustics Inc., CalPACT LLC and Union Photoacoustic Technologies Ltd., which, however, did not support this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27 and Tables 1–7.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Liu, C.Z., Luo, Y. et al. Panoramic photoacoustic computed tomography with learning-based classification enhances breast lesion characterization. Nat. Biomed. Eng (2025). https://doi.org/10.1038/s41551-025-01435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-025-01435-3

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer