Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective translational control by PABPC1 phase separation regulates blast crisis and therapy resistance in chronic myeloid leukaemia

Abstract

Tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL1 fusion tyrosine kinase have revolutionized the treatment of chronic myeloid leukaemia (CML). However, the development of TKI resistance and the subsequent transition from the chronic phase (CP) to blast crisis (BC) threaten patients with CML. Accumulating evidence suggests that translational control is crucial for cancer progression. Our high-throughput CRISPR–Cas9 screening identified poly(A) binding protein cytoplasmic 1 (PABPC1) as a driver for CML progression in the BC stage. PABPC1 preferentially improved the translation efficiency of multiple leukaemogenic mRNAs with long and highly structured 5′ untranslated regions by forming biomolecular condensates. Inhibiting PABPC1 significantly suppressed CML cell proliferation and attenuated disease progression, with minimal effects on normal haematopoiesis. Moreover, we identified two PABPC1 inhibitors that inhibited BC progression and overcame TKI resistance in murine and human CML. Overall, our work identifies PABPC1 as a selective translation enhancing factor in CML-BC, with its genetic or pharmacological inhibition overcoming TKI resistance and suppressed BC progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CRISPR–Cas9 screening identifies PABPC1 as the key regulator of mRNA translation in CML-BC.
Fig. 2: Pabpc1 depletion suppresses CML disease progression and improves survival in vivo.
Fig. 3: PABPC1 promotes the translation of multiple leukaemogenic mRNAs, including BCR-ABL1 in CML-BC.
Fig. 4: PABPC1 inhibition suppresses TKI-resistant CML cells and improves survival.
Fig. 5: PABPC1 undergoes phase separation to form condensates to achieve robust translation in CML-BC.
Fig. 6: Small molecules 1,10-Phen and ML324 bind to PABPC1 and inhibit its RNA binding activity.
Fig. 7: Small molecules 1,10-Phen and ML324 suppress CML progression in the BC stage.

Similar content being viewed by others

Data availability

RNA-sequencing, RIP-seq and Polysome-seq data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession codes GSE198142, GSE280877, GSE280878 and GSE280879. All other data supporting the findings of this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Vetrie, D., Helgason, G. V. & Copland, M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat. Rev. Cancer 20, 158–173 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Calabretta, B. & Perrotti, D. The biology of CML blast crisis. Blood 103, 4010–4022 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Hehlmann, R. How I treat CML blast crisis. Blood 120, 737–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Perrotti, D., Jamieson, C., Goldman, J. & Skorski, T. Chronic myeloid leukemia: mechanisms of blastic transformation. J. Clin. Invest. 120, 2254–2264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oehler, V. G. et al. The derivation of diagnostic markers of chronic myeloid leukemia progression from microarray data. Blood 114, 3292–3298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Radich, J. P. et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl Acad. Sci. USA 103, 2794–2799 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  PubMed  Google Scholar 

  9. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fabbri, L., Chakraborty, A., Robert, C. & Vagner, S. The plasticity of mRNA translation during cancer progression and therapy resistance. Nat. Rev. Cancer 21, 558–577 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nat. Rev. Cancer 10, 254–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Boussemart, L. et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature 513, 105–109 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, X. et al. Targeting translation initiation by synthetic rocaglates for treating MYC-driven lymphomas. Leukemia 34, 138–150 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Corley, M., Burns, M. C. & Yeo, G. W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78, 9–29 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peixeiro, I. et al. Interaction of PABPC1 with the translation initiation complex is critical to the NMD resistance of AUG-proximal nonsense mutations. Nucleic Acids Res. 40, 1160–1173 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Safaee, N. et al. Interdomain allostery promotes assembly of the poly(A) mRNA complex with PABP and eIF4G. Mol. Cell 48, 375–386 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Su, R. et al. PABPC1-induced stabilization of BDNF-AS inhibits malignant progression of glioblastoma cells through STAU1-mediated decay. Cell Death Dis. 11, 81 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, H. et al. PABPC1 interacts with AGO2 and is responsible for the microRNA mediated gene silencing in high grade hepatocellular carcinoma. Cancer Lett. 367, 49–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Daley, G. Q., Van Etten, R. A. & Baltimore, D. Blast crisis in a murine model of chronic myelogenous leukemia. Proc. Natl Acad. Sci. USA 88, 11335–11338 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giustacchini, A. et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat. Med. 23, 692–702 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Ristau, J., Watt, K., Oertlin, C. & Larsson, O. Polysome fractionation for transcriptome-wide studies of mRNA translation. Methods Mol. Biol. 2418, 223–241 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Soverini, S. et al. IDH2 somatic mutations in chronic myeloid leukemia patients in blast crisis. Leukemia 25, 178–181 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Vidovic, A. et al. The proto-oncogene expression varies over the course of chronic myeloid leukemia. Hematology 13, 34–40 (2008).

    Article  PubMed  Google Scholar 

  25. Singh, M. M. et al. Expression and activity of Fyn mediate proliferation and blastic features of chronic myelogenous leukemia. PLoS ONE 7, e51611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolanin, S. et al. PML-RARA fusion transcripts detectable 8 months prior to promyelocytic blast crisis in chronic myeloid leukemia. Case Rep. Hematol. 2020, 8830595 (2020).

    PubMed  PubMed Central  Google Scholar 

  27. Grothusen, G. P. et al. DCAF15 control of cohesin dynamics sustains acute myeloid leukemia. Nat. Commun. 15, 5604 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai, L. L., Zhao, K. & Yuan, X. J. Expression of minichromosome maintenance 8 in chronic myelogenous leukemia. Int. J. Clin. Exp. Pathol. 8, 14180–14188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren, R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer 5, 172–183 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. O’Hare, T., Zabriskie, M. S., Eiring, A. M. & Deininger, M. W. Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nat. Rev. Cancer 12, 513–526 (2012).

    Article  PubMed  Google Scholar 

  31. Gao, Y. F., Li, X., Li, P. L. & Lin, Y. A brief guideline for studies of phase-separated biomolecular condensates. Nat. Chem. Biol. 18, 1307–1318 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Cheng, Y. M. et al. N6-methyladenosine on mRNA facilitates a phase-separated nuclear body that suppresses myeloid leukemic differentiation. Cancer Cell 39, 958–972 (2021).

    Article  Google Scholar 

  33. Murray, D. T. et al. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615–972.e8 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mills, N. L., Shelat, A. A. & Guy, R. K. Assay optimization and screening of RNA-protein interactions by AlphaScreen. J. Biomol. Screen 12, 946–955 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury (National Institute of Diabetes and Digestive and Kidney Diseases, 2012).

  36. Alharbi, R. A. et al. Inhibition of HOX/PBX dimer formation leads to necroptosis in acute myeloid leukemia cells. Oncotarget 8, 89566–89579 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu, Z. Q. et al. The role of matrix metalloprotease (MMP) to the autolysis of sea cucumber (Stichopus japonicus). J. Sci. Food Agr. 99, 5752–5759 (2019).

    Article  CAS  Google Scholar 

  38. Kim, S. Y. et al. Inhibition of histone demethylase KDM4 by ML324 induces apoptosis through the unfolded protein response and Bim upregulation in hepatocellular carcinoma cells. Chem. Biol. Interact. 353, 109806 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Cerezo, M. et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat. Med. 24, 1877–1886 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Wolfe, A. L. et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 513, 65–70 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Topisirovic, I. et al. Aberrant eukaryotic translation initiation factor 4E-dependent mRNA transport impedes hematopoietic differentiation and contributes to leukemogenesis. Mol. Cell. Biol. 23, 8992–9002 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mitchell, R. et al. Targeting BCR-ABL-independent TKI resistance in chronic myeloid leukemia by mTOR and autophagy inhibition. J. Natl Cancer Inst. 110, 467–478 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Kini, H. K., Silverman, I. M., Ji, X., Gregory, B. D. & Liebhaber, S. A. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. RNA 22, 61–74 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fu, X. D. & Ares, M. Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 15, 689–701 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kurosaki, T., Mitsutomi, S., Hewko, A., Akimitsu, N. & Maquat, L. E. Integrative omics indicate FMRP sequesters mRNA from translation and deadenylation in human neuronal cells. Mol. Cell 82, 4564–4581.e4511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de Rozieres, C. M. et al. PABP1 drives the selective translation of influenza A virus mRNA. J. Mol. Biol. 434, 167460 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xie, J. J. et al. Targeting androgen receptor phase separation to overcome antiandrogen resistance. Nat. Chem. Biol. 18, 1341–1350 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, M. et al. Interferon-γ induces tumor resistance to anti-PD-1 immunotherapy by promoting YAP phase separation. Mol. Cell 81, 1216–1230.e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Peng, C. & Li, S. Chronic Myeloid Leukemia (CML) mouse model in translational research. Methods Mol. Biol. 1438, 225–243 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kok, C. H. et al. Gene expression signature that predicts early molecular response failure in chronic-phase CML patients on frontline imatinib. Blood Adv. 3, 1610–1621 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benito, R. et al. Imatinib therapy of chronic myeloid leukemia restores the expression levels of key genes for DNA damage and cell-cycle progression. Pharmacogenet. Genomics 22, 381–388 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cammas, A., Herviou, P., Dumas, L. & Millevoi, S. Analysis of mRNA translation by polysome profiling. Methods Mol. Biol. 2404, 69–81 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lorenz, R. et al. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6, 26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhao, J. et al. IRESfinder: identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features. J. Genet. Genomics 45, 403–406 (2018).

    Article  PubMed  Google Scholar 

  62. Liao, J. Y. et al. EuRBPDB: a comprehensive resource for annotation, functional and oncological investigation of eukaryotic RNA binding proteins (RBPs). Nucleic Acids Res. 48, D307–D313 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cowan-Jacob, S. W. et al. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr. D Biol. Crystallogr. 63, 80–93 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Pringle, E. S., McCormick, C. & Cheng, Z. Polysome profiling analysis of mRNA and associated proteins engaged in translation. Curr. Protoc. Mol. Biol. 125, e79 (2019).

    Article  PubMed  Google Scholar 

  66. Kaur, T. et al. Sequence-encoded and composition-dependent protein–RNA interactions control multiphasic condensate morphologies. Nat. Commun. 12, 872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the State Key Laboratory of Common Mechanism Research of Major Diseases Platform for consultation and the instrument availability that supported this work, as well as the High-performance Computing Platform at the Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences. This work was supported by the National Key Research and Development Program of China (2019YFA0802600 to Y.M., 2021YFA0805703 to Y.M., 2019YFA0801800 to J.Y.), the National Natural Science Foundation of China (92268205 to J.Y., 82122005 to Y.M., 82325002 to M.Z., 82270192 to X.W.), the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-019 to J.Y.) and the Haihe Laboratory of Cell Ecosystem Innovation Fund (22HHXBSS00027 to Y.M.). This paper was edited by Life Science Editors.

Author information

Authors and Affiliations

Authors

Contributions

J.Y., Y.M., M.Z. and X.W. conceived and directed the study. C.S. designed and performed the molecular and mechanistic experiments, assisted by M.S., S.L., B.S. and X.L. X.X. designed and performed the animal experiments, assisted by C.S., J.C. and M.J. Z.C. performed the bioinformatics analysis, assisted by W.W. and J.X. F.Z. performed the small-molecule screening experiments, assisted by C.S. X.W., F.W. and M.H. designed the CRISPR library. Y.G. provided TKI-resistant cells and technical assistance. L.J., H.W. and J.L. provided the primary CML-patient samples. J.Y., Y.M., M.Z. and C.S. wrote the paper.

Corresponding authors

Correspondence to Xiaoshuang Wang, Meng Zhao, Jia Yu or Yanni Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Shaoguang Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 CRISPR–Cas9 screening of RBPs in CML-BC.

a, Differentially expressed genes (DEGs) between CML-CP (n = 42) and CML-BC (n = 28) patients from GSE4170. b, Functional enrichment analysis of DEGs in a; the top eight enriched terms of downregulated genes are labelled. c, Relative expression of genes enriched in four representative GO terms from Fig. 1a. d, Cell proliferation of primary leukemia cells from CML-CP (1#, 2#) and CML-BC (1#, 2#) patients (n = 3). e, Differential expression of all known RBPs between CML-CP (n = 42) and CML-BC (n = 28) patients from GSE4170. f, Western blots showing Cas9 protein levels in Tet-on/Tet-off edited K562 cells post-Dox induction. g, Flow cytometry gating strategy for sorting HPGHigh and HPGLow cell populations following CRISPR/Cas9 screening. h-i, sgRNA distribution of seven known translational regulators between HPGHigh and HPGLow cells (h), or between Day 0 and Day 20 cells post-Dox induction (left of i) with sgRNA abundance in cells on Day 0, 5, 10, 15, 20 was shown (right). j-k, Representative confocal microscopy images and corresponding flow cytometry histograms showing nascent peptides synthesis (j), and cell proliferation (k) in K562 cells following inhibition of each of the seven RBPs (n = 3). l, Normalized expression of PABPC1 in CML patients before (n = 9) and after (n = 9) TKI treatment (GSE33075). Data are shown as the mean ± SEM. P-values were determined by two-way repeated measures ANOVA (d, k), and paired two-tailed Student’s t-test (l), **P < 0.01, ***P < 0.001.

Source data

Extended Data Fig. 2 PABPC1 inhibition suppresses CML progression in BC stage and improves survival.

a, Schematic outline of conditional Pabpc1 knockout mouse model construction mediated by CRISPR/Cas9. b, Genomic iditification of mice with Pabpc1 deletion (n = 5). c, Representative FACS plots of GFP+ CD11b+ leukemia cells from PB of CML mice generated in Fig. 2a (n = 6 mice). d-e, Cell cycle distribution (d) and apoptosis rate (e) of LSK and LSC (LT-HSC) populations from primary recipients at day 21 after engraftment (in Fig. 2b) (n = 5 mice) f, Western blots showing protein levels in BMCs from Pabpc1 cKO mice (n = 3 mice). g, Apoptosis rate of BMCs in Pabpc1 cKO mice (n = 5 mice). h-i, Colony formation ability (h) and cell proliferation (i) of primary leukemia cells from (1#, 2#, 3#) CML-CP patients following PABPC1 inhibition (n = 3). j-k, Colony formation ability (j) and cell proliferation (k) of normal HSPCs from healthy donors following PABPC1 inhibition (n = 3). l, The generation of cell-derived xenograft (CDX) CML mouse model using K562 cells. m, Quantification of CD33+ CML cells in PB (left) and survival curves (right) of recipients (n = 6 mice). Data are shown as the mean ± SEM. P-values were determined by Student’s unpaired two-tailed t-test (d, e, g, h-k), one-way ANOVA with Bonferroni correction (m), and Kaplan–Meier survival analysis (m), ns P > 0.05, **P < 0.01, ***P < 0.001.

Source data

Extended Data Fig. 3 PABPC1 inhibition represses the translation of BCR-ABL1 and other leukemogenic transcripts in CML-BC.

a, Differentially expressed genes in K562 cells identified by RNA-seq. b, The top GO terms enriched in DEGs identified in (a). c, Relative BCR-ABL1 mRNA abundance per component to that in total RNA in MEG cells following PABPC1 inhibition (n = 3). d-e, Western blots showing BCR-ABL1 protein levels in MEG-01 cells following PABPC1 inhibition (d), or in BMCs of CML recipients in Fig. 2b (e) (n = 3 mice). f, Summary and definition of BCR-ABL1 downstream genes. g, Gene set enrichment analysis (GSEA) of BCR-ABL1 downstream genes using RNA-seq data (a). h, Differential expression of BCR-ABL1 downstream genes in leukemia cells derived from CML patients at different stages of disease, CML-CP (n = 42) and CML-BC (n = 28) patients from the GSE4170; CML patients (n = 9) before/after TKI treatment from the GSE33075; IM-resistant (n = 13) and remission (n = 83) CML patients from the GSE130404. i, Western blots showing BCR-ABL1 protein levels in K562 cells with PABPC1 inhibition rescued by BCR-ABL1 overexpression. j-k, Cell cycle distributions (j), early (Annexin V+-633-) and late (Annexin V+-633+) apoptosis (k) rates in K562 cells with PABPC1 inhibition rescued by BCR-ABL1 overexpression (n = 3). Data are shown as the mean ± SEM. P-values were determined by Student’s unpaired two-tailed t-test (a, h), and one-way ANOVA with Bonferroni correction (c, j, k), ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.

Source data

Extended Data Fig. 4 PABPC1 inhibition represses TKI-resistant CML cell proliferation.

a-b, Colony formation ability of TKI-resistant K562 cells with PABPC1 inhibition or imatinib treatment (n = 3). c-d, Cell cycle distributions of TKI-resistant K562 cells with PABPC1 inhibition or imatinib treatment (n = 3). e-f, Early (Annexin V+-633-) and late (Annexin V+-633+) apoptosis rates in TKI-resistant K562 cells with PABPC1 inhibition or imatinib treatment (n = 3). g, The degree of PABPC1 inhibition on the proliferation of K562, K562/G01, and K562-r cells. Data are shown as the mean ± SEM. P-values were determined by one-way ANOVA with Bonferroni correction (a-f); ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.

Source data

Extended Data Fig. 5 PABPC1 undergoes LLPS to form condensates in CML-BC.

a, The colocalization ratio (colocalized condensates/individual protein condensates) per cell according to Fig. 5a (n = 10 per sample). b, Co-immunofluorescence staining of PABPC1 (red) and eIF4E/RPL7A (green) in bone marrow cells from CML-BC (1#, 2#, 3#) patients, and nuclei counterstained with DAPI (blue). Scale bar, 2 μm. c, The colocalization ratio (colocalized condensates/individual protein condensates) per cell (b) (n = 10 per sample). d, PLA assay of PABPC1-eIF4G/eIF4E colocalization in bone marrow cells from CML-BC (1#, 2#, 3#) patients, and nuclei counterstained with DAPI (blue). Scale bar, 2 μm. e-f, Immunofluorescence staining showing the effects of PABPC1 inhibition on formation (e) or quantity (f) of eIF4G/eIF4E/RPL7A condensates (green) in bone marrow cells from CML-BC (1#, 2#, 3#) patients, and nuclei counterstained with DAPI (blue), (n = 10 per patient). Scale bar, 2 μm. g, PONDR predicted intrinsically disordered regions in PABPC1. h, Summary of phase-separation behavior of PABPC1 (Fig. 5d). i, FRAP analysis of the PABPC1/ PolyA+ mRNA condensates with 488 nm laser in vitro. j, Schematic diagram of truncation and chimeric mutation in PABPC1 protein. k, Fluorescence area per droplet at 0.8 μM protein concentration (Fig. 5h). l, FRAP analysis of EGFP-PABPC1 (IDR3_FUS) in transfected K562 cells. m, R-EMSA assay showing purified recombined EGFP-PABPC1 binding to poly(A) RNA sequences in vitro. n, Pull-down assay showing purified recombined EGFP-PABPC1 binding to eIF4G protein in vitro. o, Schematic diagram of in vitro translation from Fig. 5j. p, Western blot showing the protein expression levels of K562 cells from Fig. 5k-l. Data are shown as the mean ± SEM. Adjusted p-values were calculated by Wilcoxon rank sum test (a, f) and one-way ANOVA with Bonferroni correction (k); ns P > 0.05, *P < 0.05, ***P < 0.001.

Source data

Extended Data Fig. 6 Small molecules 1,10-Phen and ML324 target PABPC1 to inhibit the robust translation in CML-BC.

a, R-EMSA assay showing PABPC1 binding to poly(A) RNA sequences. b, AlphaScreen signals showing optimum concentrations of PABPC1 protein (purple) and poly(A) RNA (orange). c, Scatter plots showing percentage inhibition of compounds in the second round of screening. d, Binding constant (Kd) values detected by SPR assay between four compounds (Fig. 6c) and PABPC1 protein molecules. e-f, Cell proliferation (e), early (Annexin V+-633-) and late (Annexin V+-633+) apoptosis rates (f) of K562 or MEG-01 cells with 1,10-Phen (purple) or ML324 (orange) treatment (n = 3). g, Cell proliferation of TKI-resistant K562 cells with 1,10-Phen or ML324 treatment (n = 3). h-i, Representative confocal microscopy imaging and corresponding flow histogram showing the fluorescence intensity of nascent peptides in K562 (h) and MEG-01 (i) (n = 3). Scale bar, 10 μM. j, Relative mutated BCR-ABL1 mRNA abundance per component to that in total RNA in K562 cells with 1,10-Phen or ML324 treatment (n = 3). k, Correlation of PABPC1-binding genes in K562 cells between PABPC1 inhibition and 1,10-Phen, ML324 treatment or two random genes (LARP7 and NONO) inhibition. l-o, IC50 values of 1,10-Phen or ML324 treatment on K562/MEG-01 cells with PABPC1 inhibition or not (n = 3). Data are shown as the mean ± SEM. P-values were determined by two-way repeated measures ANOVA (e, g, l-o), and one-way ANOVA with Bonferroni correction (f, h-j), ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.

Source data

Extended Data Fig. 7 Small molecules 1,10-Phen and ML324 suppress CML-BC progression.

a, Acute toxicity (above) with intraperitoneal administration, pharmacokinetics (below) with intravenous administration of 1,10-Phen or ML324 in vivo (n = 3 mice). b, The strategy analyzing the safety of 1,10-Phen or ML324 treatment in vivo. qd.ip, intraperitoneal injection once a day. c-d, The weights (c) and H&E staining (d) of heart, liver, spleen, lung, and kidney of mice treated with 1,10-Phen or ML324 (n = 5 mice). e, Spleen weights of CML recipients post 1,10-Phen, ML324, IM, 1,10-Phen+IM, or ML324 + IM treatment (n = 5 mice). f-g, Representative confocal microscopy images and corresponding flow cytometry histograms showing nascent peptides synthesis (f), and western blots showing BCR-ABL1 protein levels (g) in leukemic cells from CML recipients post 1,10-Phen, ML324, IM treatment (n = 3 mice). Scale bar, 20 μM. h, Quantification of HPCs (CD34+ CD38+), HSCs (CD38- CD90-) and LT-HSCs (CD90+) in the bone marrow of PDX CML-BC mice after 1,10-Phen, ML324, IM, 1,10-Phen+IM, or ML324 + IM treatment (n = 3 mice). i-j, Representative confocal microscopy images and corresponding flow cytometry histograms showing nascent peptides synthesis (i), and western blots showing BCR-ABL1 protein levels (j) in leukemic cells from PDX CML-BC mice after 1,10-Phen, ML324, IM treatment (n = 3 mice). Scale bar, 20 μM. k, The inhibition of shPABPC1, 1,10-Phen and ML324 on the proliferation of normal HSPCs, leukemia cells from CML-CP and CML-BC patients (n = 3). Data are shown as the mean ± SEM. P-values were determined by one-way ANOVA with Bonferroni correction (e-f, h-i), and Student’s unpaired two-tailed t-test (k), ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.

Source data

Supplementary information

Source data

Source Data Fig. 1

Unprocessed western blots.

Source Data Fig. 3

Unprocessed western blots.

Source Data Fig. 4

Unprocessed western blots.

Source Data Fig. 6

Unprocessed western blots.

Source Data Extended Data Fig. 1

Unprocessed western blots.

Source Data Extended Data Fig. 2

Unprocessed western blots and gels.

Source Data Extended Data Fig. 3

Unprocessed western blots.

Source Data Extended Data Fig. 5

Unprocessed western and R-EMSA blots.

Source Data Extended Data Fig. 6

Unprocessed R-EMSA blots.

Source Data Extended Data Fig. 7

Unprocessed western blots.

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Xu, X., Chen, Z. et al. Selective translational control by PABPC1 phase separation regulates blast crisis and therapy resistance in chronic myeloid leukaemia. Nat Cell Biol 27, 683–695 (2025). https://doi.org/10.1038/s41556-024-01607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-024-01607-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer