Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fullerene on non-iron cluster-matrix co-catalysts promotes collaborative H2 and N2 activation for ammonia synthesis

Abstract

Developing highly effective catalysts for ammonia (NH3) synthesis is a challenging task. Even the current, prevalent iron-derived catalysts used for industrial NH3 synthesis require harsh reaction conditions and involve massive energy consumption. Here we show that anchoring buckminsterfullerene (C60) onto non-iron transition metals yields cluster-matrix co-catalysts that are highly efficient for NH3 synthesis. Such co-catalysts feature separate catalytic active sites for hydrogen and nitrogen. The ‘electron buffer’ behaviour of C60 balances the electron density at catalytic transition metal sites and enables the synergistic activation of nitrogen on transition metals in addition to the activation and migration of hydrogen on C60 sites. As demonstrated in long-term, continuous runs, the C60-promoting transition metal co-catalysts exhibit higher NH3 synthesis rates than catalysts without C60. With the involvement of C60, the rate-determining step in the cluster-matrix co-catalysis is found to be the hydrogenation of *NH2. C60 incorporation exemplifies a practical approach for solving hydrogen poisoning on a wide variety of oxide-supported Ru catalysts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic performance.
Fig. 2: Structural properties.
Fig. 3: Activation of reaction molecules.
Fig. 4: DFT calculation.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within this Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  2. Kandemir, T. et al. The Haber–Bosch process revisited: on the real structure and stability of “ammonia iron” under working conditions. Angew. Chem. Int. Ed. 52, 12723–12726 (2013).

    Article  CAS  Google Scholar 

  3. Martirez, J. M. P. & Carter, E. A. Prediction of a low-temperature N2 dissociation catalyst exploiting near–IR–to–visible light nanoplasmonics. Sci. Adv. 3, eaao4710 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chang, F. et al. Potassium hydride-intercalated graphite as an efficient heterogeneous catalyst for ammonia synthesis. Nat. Catal. 5, 222–230 (2022).

    Article  CAS  Google Scholar 

  5. Tang, Y. et al. Metal-dependent support effects of oxyhydride-supported Ru, Fe, Co catalysts for ammonia synthesis. Adv. Energy Mater. 8, 1801772 (2018).

    Article  Google Scholar 

  6. Ye, T.-N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Q. et al. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat. Catal. 4, 959–967 (2021).

    Article  CAS  Google Scholar 

  8. Wang, T. et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ. Sci. 12, 3522–3529 (2019).

    Article  CAS  Google Scholar 

  9. Sato, K. et al. Barium oxide encapsulating cobalt nanoparticles supported on magnesium oxide: active non-noble metal catalysts for ammonia synthesis under mild reaction conditions. ACS Catal. 11, 13050–13061 (2021).

    Article  CAS  Google Scholar 

  10. Jacobsen, C. J. H. et al. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Peng, W. et al. Spontaneous atomic ruthenium doping in Mo2CTx MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv. Energy Mater. 10, 2001364 (2020).

    Article  CAS  Google Scholar 

  12. Kammert, J. et al. Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst. J. Am. Chem. Soc. 142, 7655–7667 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Baik, Y. et al. Splitting of hydrogen atoms into proton–electron pairs at BaO–Ru interfaces for promoting ammonia synthesis under mild conditions. J. Am. Chem. Soc. 145, 11364–11374 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Zheng, J. et al. Efficient non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low pressure. Angew. Chem. Int. Ed. 58, 17335–17341 (2019).

    Article  CAS  Google Scholar 

  15. Han, G.-F. et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 16, 325–330 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Mehta, P. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1, 269–275 (2018).

    Article  Google Scholar 

  17. Mao, C. et al. Hydrogen spillover to oxygen vacancy of TiO2–xHy/Fe: breaking the scaling relationship of ammonia synthesis. J. Am. Chem. Soc. 142, 17403–17412 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Ye, T.-N. et al. Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts. J. Am. Chem. Soc. 142, 14374–14383 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, K. et al. Spin-mediated promotion of Co catalysts for ammonia synthesis. Science 383, 1357–1363 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, J. et al. Ambient-pressure synthesis of ethylene glycol catalyzed by C60-buffered Cu/SiO2. Science 376, 288–292 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Fischer, J. E. et al. Compressibility of solid C60. Science 252, 1288–1290 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, S. et al. Removal of hydrogen poisoning by electrostatically polar MgO support for low-pressure NH3 synthesis at a high rate over the Ru catalyst. ACS Catal. 10, 5614–5622 (2020).

    Article  CAS  Google Scholar 

  23. Hattori, M., Okuyama, N., Kurosawa, H. & Hara, M. Low-temperature ammonia synthesis on iron catalyst with an electron donor. J. Am. Chem. Soc. 145, 7888–7897 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, Y. et al. Essential role of Ru–anion interaction in Ru-based ammonia synthesis catalysts. ACS Catal. 12, 7633–7642 (2022).

    Article  CAS  Google Scholar 

  26. Ojeda, M. et al. Manganese-promoted Rh/Al2O3 for C2-oxygenates synthesis from syngas: effect of manganese loading. Appl. Catal. A Gen. 261, 47–55 (2004).

    Article  CAS  Google Scholar 

  27. Aika, K.-i Role of alkali promoter in ammonia synthesis over ruthenium catalysts—effect on reaction mechanism. Catal. Today 286, 14–20 (2017).

    Article  CAS  Google Scholar 

  28. Sham, T. K. et al. Ru L‐edge X‐ray absorption studies of the formation of Ru–Cu bimetallic aggregates on Cu(100). J. Chem. Phys. 95, 8725–8731 (1991).

    Article  CAS  Google Scholar 

  29. Deng, S. et al. Synergistic doping and intercalation: realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction. Angew. Chem. Int. Ed. 58, 16289–16296 (2019).

    Article  CAS  Google Scholar 

  30. Lu, Y. et al. Water durable electride Y5Si3: electronic structure and catalytic activity for ammonia synthesis. J. Am. Chem. Soc. 138, 3970–3973 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Li, L. et al. Size sensitivity of supported Ru catalysts for ammonia synthesis: from nanoparticles to subnanometric clusters and atomic clusters. Chem 8, 749–768 (2022).

    Article  CAS  Google Scholar 

  32. Zhou, S. et al. Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals. J. Am. Chem. Soc. 142, 308–317 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Yao, Y. et al. A Spectroscopic study of electrochemical nitrogen and nitrate reduction on rhodium surfaces. Angew. Chem. Int. Ed. 59, 10479–10483 (2020).

    Article  CAS  Google Scholar 

  35. Bian, X. et al. Quantifying the contribution of hot electrons in photothermal catalysis: a case study of ammonia synthesis over carbon-supported Ru catalyst. Angew. Chem. Int. Ed. 62, e202304452 (2023).

    Article  CAS  Google Scholar 

  36. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  38. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  39. Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    Article  Google Scholar 

  40. Ulissi, Z. W., Medford, A. J., Bligaard, T. & Nørskov, J. K. To address surface reaction network complexity using scaling relations machine learning and DFT calculations. Nat. Commun. 8, 14621 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Alavi, A. et al. CO Oxidation on Pt(111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998).

    Article  CAS  Google Scholar 

  42. Liu, Z.-P. & Hu, P. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C−H and C−O bond breaking/making on flat, stepped, and kinked metal surfaces. J. Am. Chem. Soc. 125, 1958–1967 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Anderson, G. M. Thermodynamics of Natural Systems (Cambridge Univ. Press, 2005).

  44. Asthagiri, A. & Janik, M. J. Computational Catalysis (Royal Society of Chemistry, 2013).

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (22221005, L.J.; 22222801, X.W.; 92361303, S.X.; 22038002, L.J.; 92061204, S.X.; 22322302, B.Y.; 21721001, Y.Z.), the National Key Research and Development Program (2021YFB4000400, L.J.; and 2022YFA1604101, X.W.) and the Key R&D plan of the Shanghai Science and Technology Commission (21DZ1209002, L.J.). We thank Y. Gong from Northwestern Polytechnical University for providing electride supports. Moreover, we acknowledge the facility resources from the Electron Microscopy Center of Fuzhou University.

Author information

Authors and Affiliations

Authors

Contributions

L.J. conceived the project and organized experiments as well as participated in paper revision. X.W. proposed the detail research idea and supervised the entire project including designing the research scheme and the interpretation of results as well as wrote the manuscript. Y.Zhang and X.P. performed the synthesis of samples. Y.Zhang, X.P., T.Z. and M.Z. performed characterization and catalytic measurements. H.-R.T. performed mass spectra measurements. L.Z. provided the instrument platform for XAS. J.L., B.Y. and Z.-C.C. carried out the model construction and density functional theory calculations. X.W. and Y.Zhou performed in situ X-ray absorption fine-structure measurements. Y.T. performed the fitting of XAFS data, X.L. and Z.Y. carried out the AC–TEM and AC–STEM as well as iDPC measurements. J.-W.Z. and C.-t.A. participated in discussion and revision. S.-Y.X. provided the raw C60 and proposed the concept of cluster matrix, and participated in interpretation of results and made comments on the manuscript. All authors participated in the interpretation of results and made comments on the manuscript.

Corresponding authors

Correspondence to Xiuyun Wang, Lilong Jiang or Su-Yuan Xie.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–53, Tables 1–8, methods and discussion.

Reporting Summary

Supplementary Data 1

Source data of supplementary figures.

Source data

Source Data Fig. 1

Source data of Fig. 1.

Source Data Fig. 2

Source data of Fig. 2.

Source Data Fig. 3

Source data of Fig. 3.

Source Data Fig. 4

Source data of Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Peng, X., Tian, HR. et al. Fullerene on non-iron cluster-matrix co-catalysts promotes collaborative H2 and N2 activation for ammonia synthesis. Nat. Chem. 16, 1781–1787 (2024). https://doi.org/10.1038/s41557-024-01626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01626-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing