Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Isolation and characterization of a triplet nitrene

Abstract

Nitrene radical compounds are short-lived intermediates in a variety of nitrogen-involved transformations. They feature either a singlet or a triplet ground state, depending on the electronic properties of the substituents. Triplet nitrenes are highly reactive and their isolation in the condensed phase under ambient conditions is challenging. Here we report the synthesis and isolation of a triplet arylnitrene supported by a bulky hydrindacene ligand. The arylnitrene is fully characterized by various spectroscopic and structural techniques including electron paramagnetic resonance spectroscopy and single-crystal X-ray diffraction. Its high stability is largely attributed to the steric hindrance and effective electron delocalization provided by the supporting ligand. Electron paramagnetic resonance spectroscopy in conjunction with highly correlated wavefunction-based ab initio calculations provides support for a triplet ground state nitrene with axial zero-field splitting D = 0.92 cm–1 and vanishing rhombicity E/D = 0.002.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electronic structures and structurally characterized nitrenes.
Fig. 2: Synthesis and characterization of 2.
Fig. 3: Electronic structure of 2.
Fig. 4: Reactivity studies of nitrene 2.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 2354664 (Supplementary Data 1), 2354665 (Supplementary Data 2), 2354666 (Supplementary Data 3), 2368517 (Supplementary Data 4), 2354667 (Supplementary Data 5), 2354668 (Supplementary Data 6) and 2368518 (Supplementary Data 7). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All data are available in the main text or Supplementary Information and are also available from the corresponding authors on reasonable request.

References

  1. Platz, M. S. in Reactive Intermediate Chemistry (eds Moss, R. A., Paztz, M. S. & Jones, M. Jr.), 501–559 (Wiley-VCH, 2003).

  2. Dequirez, G., Pons, V. & Dauban, P. Nitrene chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed. 51, 7384–7395 (2012).

    CAS  Google Scholar 

  3. Tiemann, F. Ueber die einwirkung von benzolsulfonsäurechlorid auf amidoxime. Ber. Dtsch. Chem. Ges. 24, 4162–4167 (1891).

    Google Scholar 

  4. Meyer, D. M. & Roth, K. C. Discovery of interstellar NH. Astrophys. J. Lett. 376, L49–L52 (1991).

    CAS  Google Scholar 

  5. Wasserman, E. in Progress in Physical Organic Chemistry (eds Streitwieser, A. Jr. & Taft, R. W.), 319–336 (Wiley-VCH, 1971).

  6. Gritsan, N. P. & Platz, M. S. Kinetics, spectroscopy, and computational chemistry of arylnitrenes. Chem. Rev. 106, 3844–3867 (2006).

    CAS  PubMed  Google Scholar 

  7. Wentrup, C. Nitrenes, carbenes, diradicals, and ylides. Interconversions of reactive intermediates. Acc. Chem. Res. 44, 393–404 (2011).

    CAS  PubMed  Google Scholar 

  8. Kvaskoff, D., Lüerssen, H., Bednarek, P. & Wentrup, C. Phenylnitrene, phenylcarbene, and pyridylcarbenes. Rearrangements to cyanocyclopentadiene and fulvenallene. J. Am. Chem. Soc. 136, 15203–15214 (2014).

    CAS  PubMed  Google Scholar 

  9. Gomberg, M. An instance of trivalent carbon: triphenylmethyl. J. Am. Chem. Soc. 22, 757–771 (1900).

    Google Scholar 

  10. Zard, S. Z. Recent progress in the generation and use of nitrogen-centred radicals. Chem. Soc. Rev. 37, 1603–1618 (2008).

    CAS  PubMed  Google Scholar 

  11. Hirai, K., Itoh, T. & Tomioka, H. Persistent triplet carbenes. Chem. Rev. 109, 3275–3332 (2009).

    CAS  PubMed  Google Scholar 

  12. Wentrup, C. Carbenes and nitrenes: recent developments in fundamental chemistry. Angew. Chem. Int. Ed. 57, 11508–11521 (2018).

    CAS  Google Scholar 

  13. Soleilhavoup, M. & Bertrand, G. Stable carbenes, nitrenes, phosphinidenes, and borylenes: past and future. Chem 6, 1275–1282 (2020).

    CAS  Google Scholar 

  14. He, M., Hu, C., Wei, R., Wang, X.-F. & Liu, L. L. Recent advances in the chemistry of isolable carbene analogues with group 13–15 elements. Chem. Soc. Rev. 53, 3896–3951 (2024).

    CAS  PubMed  Google Scholar 

  15. Igau, A., Grutzmacher, H., Baceiredo, A. & Bertrand, G. Analogous α,α′-bis-carbenoid triply bonded species: synthesis of a stable λ3-phosphinocarbene-λ5-phosphaacetylene. J. Am. Chem. Soc. 110, 6463–6466 (1988).

    CAS  Google Scholar 

  16. Arduengo, A. J., Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).

    CAS  Google Scholar 

  17. Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. Stable carbenes. Chem. Rev. 100, 39–92 (2000).

    CAS  PubMed  Google Scholar 

  18. Sau, S. C., Hota, P. K., Mandal, S. K., Soleilhavoup, M. & Bertrand, G. Stable abnormal N-heterocyclic carbenes and their applications. Chem. Soc. Rev. 49, 1233–1252 (2020).

    CAS  PubMed  Google Scholar 

  19. Bellotti, P., Koy, M., Hopkinson, M. N. & Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 5, 711–725 (2021).

    CAS  PubMed  Google Scholar 

  20. Badiei, Y. M., Krishnaswamy, A., Melzer, M. M. & Warren, T. H. Transient terminal Cu–nitrene intermediates from discrete dicopper nitrenes. J. Am. Chem. Soc. 128, 15056–15057 (2006).

    CAS  PubMed  Google Scholar 

  21. Carsch, K. M. et al. Synthesis of a copper-supported triplet nitrene complex pertinent to copper-catalyzed amination. Science 365, 1138 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Das, A. et al. In crystallo snapshots of Rh2-catalyzed C–H amination. J. Am. Chem. Soc. 142, 19862–19867 (2020).

    CAS  PubMed  Google Scholar 

  23. Grünwald, A. et al. Palladium terminal imido complexes with nitrene character. J. Am. Chem. Soc. 144, 8897–8901 (2022).

    PubMed  Google Scholar 

  24. Jung, H. et al. Mechanistic snapshots of rhodium-catalyzed acylnitrene transfer reactions. Science 381, 525–532 (2023).

    CAS  PubMed  Google Scholar 

  25. Keilwerth, M. et al. From divalent to pentavalent iron imido complexes and an Fe(V) nitride via N–C bond cleavage. J. Am. Chem. Soc. 145, 873–887 (2023).

    CAS  PubMed  Google Scholar 

  26. Mao, W. et al. Synthesis and reactivity of a cobalt-supported singlet nitrene. J. Am. Chem. Soc. 145, 13650–13662 (2023).

    CAS  PubMed  Google Scholar 

  27. Dielmann, F. et al. A crystalline singlet phosphinonitrene: a nitrogen atom–transfer agent. Science 337, 1526–1528 (2012).

    CAS  PubMed  Google Scholar 

  28. Sun, J. et al. A platinum(II) metallonitrene with a triplet ground state. Nat. Chem. 12, 1054–1059 (2020).

    CAS  PubMed  Google Scholar 

  29. Schmidt-Räntsch, T. et al. Nitrogen atom transfer catalysis by metallonitrene C−H insertion: photocatalytic amidation of aldehydes. Angew. Chem. Int. Ed. 61, e202115626 (2022).

    Google Scholar 

  30. Domenianni, L. I. et al. Photoinduced metallonitrene formation by N2 elimination from azide diradical ligands. Angew. Chem. Int. Ed. 62, e202309618 (2023).

    CAS  Google Scholar 

  31. Matsuo, T. et al. Synthesis and structures of a series of bulky ‘Rind-Br’ based on a rigid fused-ring s-hydrindacene skeleton. Bull. Chem. Soc. Jpn. 84, 1178–1191 (2011).

    CAS  Google Scholar 

  32. Olaru, M., Mebs, S. & Beckmann, J. Cationic carbene analogues: donor-free phosphenium and arsenium ions. Angew. Chem. Int. Ed. 60, 19133–19138 (2021).

    CAS  Google Scholar 

  33. He, Y., Dai, C., Wang, D., Zhu, J. & Tan, G. Phosphine-stabilized germylidenylpnictinidenes as synthetic equivalents of heavier nitrile and isocyanide in cycloaddition reactions with alkynes. J. Am. Chem. Soc. 144, 5126–5135 (2022).

    CAS  PubMed  Google Scholar 

  34. Janssen, M., Mebs, S. & Beckmann, J. Kinetically stabilized diarylpnictogenium ions. ChemPlusChem 88, e202200429 (2023).

    CAS  PubMed  Google Scholar 

  35. Pang, Y. et al. Synthesis and isolation of a triplet bismuthinidene with a quenched magnetic response. Science 380, 1043–1048 (2023).

    CAS  PubMed  Google Scholar 

  36. Wang, D. et al. Monosubstituted doublet Sn(I) radical featuring substantial unquenched orbital angular momentum. J. Am. Chem. Soc. 145, 6914–6920 (2023).

    CAS  PubMed  Google Scholar 

  37. Wang, D. et al. An isolable germylyne radical with a one-coordinate germanium atom. Nat. Chem. 15, 200–205 (2023).

    CAS  PubMed  Google Scholar 

  38. Wu, M. et al. Triplet bismuthinidenes featuring unprecedented giant and positive zero field splittings. Natl Sci. Rev. 10, nwad169 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu, M. et al. A triplet stibinidene. Chem 9, 2573–2584 (2023).

    CAS  Google Scholar 

  40. Chen, H. et al. An isolable one-coordinate lead(I) radical with strong g-factor anisotropy. Angew. Chem. Int. Ed. 63, e202402093 (2024).

    CAS  Google Scholar 

  41. Wang, D. et al. An isolable phosphinogermylyne as a synthon of one-coordinate gei radical. Chin. J. Chem. 42, 736–742 (2024).

    CAS  Google Scholar 

  42. Janssen, M. et al. Synthesis of a stable crystalline nitrene. Science 385, 318–321 (2024).

    CAS  PubMed  Google Scholar 

  43. Burdzinski, G. T., Middleton, C. T., Gustafson, T. L. & Platz, M. S. Solution phase isomerization of vibrationally excited singlet nitrenes to vibrationally excited 1,2-didehydroazepine. J. Am. Chem. Soc. 128, 14804–14805 (2006).

    CAS  PubMed  Google Scholar 

  44. Biegger, P. et al. Bisalkynylated 3,6-diiminocyclohexa-1,4-diene-1,4-diamine. Chem. Commun. 51, 14844–14847 (2015).

    CAS  Google Scholar 

  45. Li, T. et al. Magnetic bistability in a discrete organic radical. J. Am. Chem. Soc. 138, 10092–10095 (2016).

    CAS  PubMed  Google Scholar 

  46. Pilbrow, J. R., Sinclair, G. R., Hutton, D. R. & Troup, G. J. Asymmetric lines in field-swept EPR: Cr3+ looping transitions in ruby. J. Mag. Res. (1969) 52, 386–399 (1983).

    CAS  Google Scholar 

  47. Mabbs, F. E. & Collison, D. Electron Paramagnetic Resonance of d Transition Metal Compounds 466–579 (Elsevier, 1992).

  48. Ye, S. Probing electronic structures of transition metal complexes using electron paramagnetic resonance spectroscopy. Mag. Res. Lett. 3, 43–60 (2023).

    CAS  Google Scholar 

  49. Roos, B. O. in Advances in Chemical Physics (ed. Lawley, K. P.), 399–445 (Wiley-VCH, 1987).

  50. Angeli, C., Cimiraglia, R., Evangelisti, S., Leininger, T. & Malrieu, J. P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 114, 10252–10264 (2001).

    CAS  Google Scholar 

  51. Evans, D. F. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. J. Chem. Soc. 1959, 2003–2005 (1959).

  52. Stoll, S. & Schweiger, A. Easyspin, a comprehensive software package for spectral simulation and analysis in EPR. J. Mag. Res. 178, 42–55 (2006).

    CAS  Google Scholar 

  53. Sheldrick, G. SHELXT–integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Google Scholar 

  54. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Google Scholar 

  55. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    CAS  Google Scholar 

  56. Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    CAS  PubMed  Google Scholar 

  57. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS  Google Scholar 

  58. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  59. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    CAS  PubMed  Google Scholar 

  60. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Google Scholar 

  61. Malmqvist, P.-Å. & Roos, B. O. The CASSCF state interaction method. Chem. Phys. Lett. 155, 189–194 (1989).

    CAS  Google Scholar 

  62. Weigend, F. Hartree–Fock exchange fitting basis sets for H to Rn. J. Comput. Chem. 29, 167–175 (2008).

    CAS  PubMed  Google Scholar 

  63. Kollmar, C., Sivalingam, K., Helmich-Paris, B., Angeli, C. & Neese, F. A perturbation-based super-CI approach for the orbital optimization of a CASSCF wave function. J. Comput. Chem. 40, 1463–1470 (2019).

    CAS  PubMed  Google Scholar 

  64. Neese, F. Importance of direct spin–spin coupling and spin-flip excitations for the zero-field splittings of transition metal complexes: a case study. J. Am. Chem. Soc. 128, 10213–10222 (2006).

    CAS  PubMed  Google Scholar 

  65. Angeli, C., Cimiraglia, R. & Malrieu, J.-P. n-Electron valence state perturbation theory: a spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 117, 9138–9153 (2002).

    CAS  Google Scholar 

  66. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    CAS  Google Scholar 

  67. Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986).

    CAS  Google Scholar 

  68. Plasser, F., Wormit, M. & Dreuw, A. New tools for the systematic analysis and visualization of electronic excitations. I. Formalism. J. Chem. Phys. 141, 024106 (2014).

    PubMed  Google Scholar 

Download references

Acknowledgements

The synthetic work was supported by the National Natural Science Foundation of China (grant numbers 22322112, 22488101 and 22071164), and the Suzhou Science & Technology NOVA Program (grant number ZXL2022445). The study of electronic structures was supported by the National Natural Science Foundation of China (grant number 92161204) and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences (grant number DICP I202312). The computational work was supported by the National Supercomputer Center (Tianhe-2 Supercomputer), Guangzhou. We also thank Instrumental Analysis and Research Center, Sun Yat-sen University for the mass spectrometric and elemental analysis.

Author information

Authors and Affiliations

Authors

Contributions

G.T. and S.Y. conceived and supervised the project. D.W., H.C. and Y.C. carried out the experiments. W.C. performed the electronic structure studies.

Corresponding authors

Correspondence to Shengfa Ye or Gengwen Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Dominik Munz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–47, Tables 1–3, starting material preparation, experimental procedures and product characterization, and computational details.

Supplementary Data 1

Crystallographic data for 1 (CCDC 2354664).

Supplementary Data 2

Crystallographic data for 2 (CCDC 2354665).

Supplementary Data 3

Crystallographic data for 3 (CCDC 2354666).

Supplementary Data 4

Crystallographic data for 4 (CCDC 2368517).

Supplementary Data 5

Crystallographic data for 5 (CCDC 2354667).

Supplementary Data 6

Crystallographic data for 6 (CCDC 2354668).

Supplementary Data 7

Crystallographic data for 7 (CCDC 2368518).

Supplementary Data 8

Coordinates for the optimized structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Chen, W., Chen, H. et al. Isolation and characterization of a triplet nitrene. Nat. Chem. 17, 38–43 (2025). https://doi.org/10.1038/s41557-024-01669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01669-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing