Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of single-crystalline sp2-carbon-linked covalent organic frameworks through imine-to-olefin transformation

Abstract

sp2-carbon-linked covalent organic frameworks (sp2c-COFs) are crystalline porous polymers with repeat organic units linked by sp2 carbons, and have attracted increasing interest due to their robust skeleton and tunable semiconducting properties. Single-crystalline sp2c-COFs with well-defined structures can represent an ideal platform for investigating fundamental physics properties and device performance. However, the robust olefin bonds inhibit the reversible-reaction-based crystal self-correction, thus yielding polycrystalline or amorphous polymers. Here we report an imine-to-olefin transformation strategy to form single-crystal sp2c-COFs. The isolated single crystals display rectangular nanotube-like domains with sizes up to approximately 24 μm × 0.8 μm × 0.8 μm, and permanent pore distribution around 1.1 nm. The highly conjugated olefin linkage endows the crystals with enhanced electronic connectivity which determines a remarkable room-temperature metal-free ferromagnetism (8.6 × 10−3 emu g−1). Our protocol is robust and generally applicable for the synthesis of single-crystalline sp2c-COFs for future spin-electron devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methodology for the imine-to-olefin transformation strategy.
Fig. 2: Crystal and chemical structures of the crystals.
Fig. 3: Single-crystal structure characterization.
Fig. 4: ESR and SQUID characterizations of the single crystals.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the article and its Supplementary Information. Crystallographic data for the sc-COFs in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) (CCDC 2340230 for sc-sp2c-COF-1, CCDC 2370333 for sc-sp2c-COF-2 and CCDC 2340227 for COF-303). Source data are provided with this paper.

References

  1. Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    CAS  PubMed  Google Scholar 

  2. Diercks, C. S. et al. The atom, the molecule and the covalent organic framework. Science 355, eaal1585 (2017).

    PubMed  Google Scholar 

  3. Tan, K. T. et al. Covalent organic frameworks. Nat. Rev. Methods Primer 3, 1 (2023).

    CAS  Google Scholar 

  4. Zhang, W. et al. Reconstructed covalent organic frameworks. Nature 604, 72–79 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yu, B. et al. Linkage conversions in single-crystalline covalent organic frameworks. Nat. Chem. 16, 114–121 (2024).

    CAS  PubMed  Google Scholar 

  6. Zhang, L. et al. Activation of pyroptosis using AIEgen-based sp2 carbon-linked covalent organic frameworks. J. Am. Chem. Soc. 145, 17689–17699 (2023).

    CAS  PubMed  Google Scholar 

  7. Wang, X. et al. Topology-selective manipulation of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 145, 26900–26907 (2023).

    CAS  PubMed  Google Scholar 

  8. Grunenberg, L. et al. Postsynthetic transformation of imine- into nitrone-linked covalent organic frameworks for atmospheric water harvesting at decreased humidity. J. Am. Chem. Soc. 145, 13241–13248 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao, Y. et al. Construction of layer-blocked covalent organic framework heterogenous films via surface-initiated polycondensations with strongly enhanced photocatalytic properties. ACS Cent. Sci. 10, 775–781 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yuan, C. et al. Crystalline C–C and C=C bond-linked chiral covalent organic frameworks. J. Am. Chem. Soc. 143, 369–381 (2021).

    CAS  PubMed  Google Scholar 

  11. Li, S. et al. Direct construction of isomeric benzobisoxazole–vinylene-linked covalent organic frameworks with distinct photocatalytic properties. J. Am. Chem. Soc. 144, 13953–13960 (2022).

    CAS  PubMed  Google Scholar 

  12. Zhang, P. et al. Fabricating industry‐compatible olefin‐linked COF resins for oxoanion pollutant scavenging. Angew. Chem. Int. Ed. 61, e202213247 (2022).

    CAS  Google Scholar 

  13. Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).

  14. Jiang, W. et al. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism. Nat. Commun. 10, 2207 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. Liu, R. et al. Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air. Nat. Catal. 7, 195–206 (2024).

    Google Scholar 

  16. Chen, Q., Wang, Y. & Luo, G. Photoenzymatic CO2 reduction dominated by collaborative matching of linkage and linker in covalent organic frameworks. J. Am. Chem. Soc. 146, 586–598 (2024).

    CAS  PubMed  Google Scholar 

  17. Kang, J. et al. 2D porous polymers with sp2‐carbon connections and sole sp2‐carbon skeletons. Adv. Funct. Mater. 30, 2000857 (2020).

    CAS  Google Scholar 

  18. Lyu, H. et al. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc. 141, 6848–6852 (2019).

    CAS  PubMed  Google Scholar 

  19. Liu, Y. et al. Vinylene‐linked 2D conjugated covalent organic frameworks by wittig reactions. Angew. Chem. Int. Ed. 61, e202209762 (2022).

    CAS  Google Scholar 

  20. Li, S. et al. Two-dimensional benzobisthiazole–vinylene-linked covalent organic frameworks outperform one-dimensional counterparts in photocatalysis. ACS Catal. 13, 1089–1096 (2023).

    CAS  Google Scholar 

  21. Wang, M. et al. Single-crystal polymers (SCPs): from 1D to 3D architectures. Chem. Soc. Rev. 52, 8165–8193 (2023).

    CAS  PubMed  Google Scholar 

  22. Liu, R. et al. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 50, 120–242 (2021).

    CAS  PubMed  Google Scholar 

  23. Evans, A. M. et al. Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks. J. Am. Chem. Soc. 141, 19728–19735 (2019).

    CAS  PubMed  Google Scholar 

  24. Wang, S. et al. Single-crystal 2D covalent organic frameworks for plant biotechnology. J. Am. Chem. Soc. 145, 12155–12163 (2023).

    CAS  PubMed  Google Scholar 

  25. Zhan, G. et al. Observing polymerization in 2D dynamic covalent polymers. Nature 603, 835–840 (2022).

    CAS  PubMed  Google Scholar 

  26. Ma, T. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).

    CAS  PubMed  Google Scholar 

  27. Han, J. et al. Fast growth of single-crystal covalent organic frameworks for laboratory X-ray diffraction. Science 383, 1014–1019 (2024).

    CAS  PubMed  Google Scholar 

  28. Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018).

    CAS  PubMed  Google Scholar 

  29. Li, H. et al. Nucleation–elongation dynamics of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 1367–1374 (2020).

    CAS  PubMed  Google Scholar 

  30. Zhou, Z. et al. Growth of single-crystal imine-linked covalent organic frameworks using amphiphilic amino-acid derivatives in water. Nat. Chem. 15, 841–847 (2023).

    CAS  PubMed  Google Scholar 

  31. Guan, X. et al. Chemically stable polyarylether-based covalent organic frameworks. Nat. Chem. 11, 587–594 (2019).

    CAS  PubMed  Google Scholar 

  32. Segura, J. L. et al. Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 48, 3903–3945 (2019).

    CAS  PubMed  Google Scholar 

  33. Cusin, L. et al. Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks. Angew. Chem. Int. Ed. 60, 14236–14250 (2021).

    CAS  Google Scholar 

  34. Liang, R.-R. et al. Fabricating organic nanotubes through selective disassembly of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 70–74 (2020).

    CAS  PubMed  Google Scholar 

  35. Koner, K. et al. Porous covalent organic nanotubes and their assembly in loops and toroids. Nat. Chem. 14, 507–514 (2022).

    CAS  PubMed  Google Scholar 

  36. Zhao, W. et al. The development of catalysts and auxiliaries for the synthesis of covalent organic frameworks. Chem. Soc. Rev. 53, 7531–7565 (2024).

    CAS  PubMed  Google Scholar 

  37. Acharjya et al. Vinylene‐linked covalent organic frameworks by base‐catalyzed aldol condensation. Angew. Chem. Int. Ed. 58, 14865–14870 (2019).

    CAS  Google Scholar 

  38. Zhang, C.-R. et al. An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO4 or 99TcO4. Nat. Commun. 13, 7621 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gui, B. et al. Crystallization of dimensional isomers in covalent organic frameworks. J. Am. Chem. Soc. 145, 11276–11281 (2023).

    CAS  PubMed  Google Scholar 

  40. Han, X. et al. Directing molecular weaving of covalent organic frameworks and their dimensionality by angular control. J. Am. Chem. Soc. 145, 22885–22889 (2023).

    CAS  PubMed  Google Scholar 

  41. Cui, B. et al. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism. Nat. Commun. 11, 66 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang, K. et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15, 896–902 (2016).

    CAS  PubMed  Google Scholar 

  43. Mahmood, J. et al. Organic ferromagnetism: trapping spins in the glassy state of an organic network structure. Chem 4, 2357–2369 (2018).

    CAS  Google Scholar 

  44. Mi, Z. et al. Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J. Am. Chem. Soc. 141, 14433–14442 (2019).

    CAS  PubMed  Google Scholar 

  45. Zhao, Y. et al. Heterocyclic aromatic N-oxidation in the biosynthesis of phenazine antibiotics from Lysobacter antibioticus. Org. Lett. 18, 2495–2498 (2016).

    CAS  PubMed  Google Scholar 

  46. Boukhvalov, D. W. et al. Effect of oxygen adsorption on magnetic properties of graphite. Phys. Rev. B 83, 233408 (2011).

    Google Scholar 

  47. Augustin, M. et al. Molar spin-susceptibility measurement of manganese ferrite nanoparticles using electron spin resonance study. Mater. Lett. 176, 71–73 (2016).

    CAS  Google Scholar 

  48. Dediu, V. A. et al. Spin routes in organic semiconductors. Nat. Mater. 8, 707–716 (2009).

    CAS  PubMed  Google Scholar 

  49. Ando, K. Seeking room-temperature ferromagnetic semiconductors. Science 312, 1883–1885 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.Z. acknowledges the National Natural Science Foundation of China (grant number 52322316), the Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang (grant number 2021R01005) and the Key Research and Development Program of Ningbo (2022ZDYF020023). Z.Z acknowledges the National Natural Science Foundation of China (grant number 22371146). S.X. and P.S. acknowledge financial support from the Interdisciplinary Thematic Institute SysChem via the IdEx Unistra (ANR-10-IDEX-0002) within the program Investissement d’Avenir program, the Foundation Jean-Marie Lehn and the Institut Universitaire de France (IUF). We thank W. Wang for valuable discussion.

Author information

Authors and Affiliations

Authors

Contributions

T.Z. initiated the project. T.Z. and S.L. designed the experiments. S.L. performed the COF syntheses, chemical structure characterizations, crystal structure characterizations and magnetization experiments. E.L., T.W. and Z.Z performed the single-crystal analysis. H.Y. and J.H. performed the SEM characterization and schematic drawing. Y.Z. performed the 13C ssNMR experiments. T.Z., S.X., P.S., Q.X and S.L. wrote the paper.

Corresponding authors

Correspondence to Zhenjie Zhang or Tao Zhang.

Ethics declarations

Competing interests

T.Z. and S.L. have applied for a patent for the imine-to-olefin transformation strategy (CN 202410295514.8). The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39 and Tables 1–6.

Supplementary Data 1

Crystallographic data for COF-303 (CCDC 2340227).

Supplementary Data 2

Crystallographic data for sc-sp2c-COF-1 (CCDC 2340230).

Supplementary Data 3

Crystallographic data for sc-sp2c-COF-2 (CCDC 2370333).

Source data

Source Data Fig. 1

Statistical source data for Fig. 1.

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xu, S., Lin, E. et al. Synthesis of single-crystalline sp2-carbon-linked covalent organic frameworks through imine-to-olefin transformation. Nat. Chem. 17, 226–232 (2025). https://doi.org/10.1038/s41557-024-01690-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-024-01690-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing