Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Preparation, separation and storage of N-monofluoromethyl amides and carbamates

Abstract

N-monofluoromethyl (N-CH2F) amides, combining amide and monofluoromethyl motifs, represent a practical modification of the amide bond that can mimic N-CH3 amides. Despite the potential value in transforming peptides and peptidomimetics with N-CH2F, the very existence of this structure has been controversial. Here we report the preparation of N-CH2F amides and carbamates via simple and robust chemical methods. The syntheses of N-CH2F amides were achieved via successive acylation and fluorination of imines and directly used in the modification of drugs, peptides and heteroaryl amides without racemization or epimerization. The use of triethylamine is the key to the separation of N-CH2F amides. The stability of nine structurally diverse N-CH2F amides was tested in eight different media, showing that most compounds remained 60–100% intact for 24 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of N-monofluoromethyl amides and carbamates.
Fig. 2: Scope of aryl imines, chloroformates, peptides and synthetic applications.
Fig. 3: Investigation of mechanism.
Fig. 4: Stability study in different solvents.

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the article and its Supplementary Information. Crystallographic data for structure 20 reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2330509. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Pattabiraman, V. R. & Bode, J. W. Rethinking amide bond synthesis. Nature 480, 471–479 (2011).

    CAS  PubMed  Google Scholar 

  2. Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    CAS  PubMed  Google Scholar 

  3. Bode, J. W. Emerging methods in amide- and peptide-bond formation. Curr. Opin. Drug Discov. Dev. 9, 765–775 (2006).

    CAS  Google Scholar 

  4. Müller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).

    PubMed  Google Scholar 

  5. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    CAS  PubMed  Google Scholar 

  6. Brand, S. et al. Lead optimization of a pyrazole sulfonamide series of trypanosoma brucei N-myristoyltransferase inhibitors: identification and evaluation of CNS penetrant compounds as potential treatments for stage 2 human African trypanosomiasis. J. Med. Chem. 57, 9855–9869 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, Y. et al. Recent progress in monofluoromethylation. Chin. J. Org. Chem. 40, 2322–2337 (2020).

    CAS  Google Scholar 

  8. Shen, X., Zhou, M., Ni, C., Zhang, W. & Hu, J. Direct monofluoromethylation of O-, S-, N-, and P-nucleophiles with PhSO(NTs)CH2F: the accelerating effect of a-fluorine substitution. Chem. Sci. 5, 117–122 (2014).

    CAS  Google Scholar 

  9. Liu, Y., Lu, L. & Shen, Q. Monofluoromethyl-substituted sulfonium ylides: electrophilic monofluoromethylating reagents with broad substrate scopes. Angew. Chem. Int. Ed. 56, 9930–9934 (2017).

    CAS  Google Scholar 

  10. Senatore, R., Malik, M., Spreitzer, M., Holzer, W. & Pace, V. Direct and chemoselective electrophilic monofluoromethylation of heteroatoms (O-, S-, N-, P-, Se-) with fluoroiodomethane. Org. Lett. 22, 1345–1349 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee, J., Gilon, C., Hoffman, A. & Kessler, H. N-methylation of peptides: a new perspective in medicinal chemistry. Acc. Chem. Res. 41, 1331–1342 (2008).

    CAS  PubMed  Google Scholar 

  12. Chatterjee, J., Rechenmacher, F. & Kessler, H. N-methylation of peptides and proteins: an important element for modulating biological functions. Angew. Chem. Int. Ed. 52, 254–269 (2013).

    CAS  Google Scholar 

  13. Wang, J. et al. Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev. 114, 2432–2506 (2014).

    CAS  PubMed  Google Scholar 

  14. Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J. & Meanwell, N. A. Applications of fluorine in medicinal chemistry. J. Med. Chem. 58, 8315–8359 (2015).

    CAS  PubMed  Google Scholar 

  15. Zhang, W., Zhu, L. & Hu, J. Electrophilic monofluoromethylation of O-, S-, and N-nucleophiles with chlorofluoromethane. Tetrahedron 63, 10569–10575 (2007).

    CAS  Google Scholar 

  16. Reichel, M. & Karaghiosoff, K. Monofluorinated nitrogen containing heterocycles: synthesis, characterization and fluorine effect. Z. Anorg. Allg. Chem. 646, 1790–1794 (2020).

    CAS  Google Scholar 

  17. Zhang, M. R., Ogawa, M., Furutsuka, K., Yoshida, Y. & Suzuki, K. [18F]Fluoromethyl iodide ([18F]FCH2I): preparation and reactions with phenol, thiophenol, amide and amine functional groups. J. Fluor. Chem. 125, 1879–1886 (2004).

  18. Moreira, R., Mendes, E., Calheiros, T., Bacelo, M. J. & Iley, J. A new direct synthesis of tertiary N-acyloxymethylamide prodrugs of carboxylic acid drugs. Tetrahedron Lett. 35, 7107–7110 (1994).

    CAS  Google Scholar 

  19. Zhang, Y., DeSchepper, D. J., Gilbert, T. M., Sai, K. K. & Klumpp, D. A. Superacid promoted reactions of N-acyliminium salts and evidence for the involvement of superelectrophiles. Chem. Commun. https://doi.org/10.1039/b708760h (2007).

  20. Klumpp, D. A., Zhang, Y., O’Connor, M. J., Esteves, P. M. & de Almeida, L. S. Aza-Nazarov reaction and the role of superelectrophiles. Org. Lett. 9, 3085–3088 (2007).

    CAS  PubMed  Google Scholar 

  21. Valeur, E. & Bradley, M. Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev. 38, 606–631 (2009).

    CAS  PubMed  Google Scholar 

  22. Hudlicky, M. Chemistry of Organic Fluorine Compounds (Ellis Horwood, 1976).

  23. Hudlicky, M. & Pavlath, A. E. Chemistry of Organic Fluorine Compounds II: A Critical Review (American Chemical Society, 1995).

  24. Liu, J. et al. Synthesis of N-trifluoromethyl amides from carboxylic acids. Chem 7, 2245–2255 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Scattolin, T., Bouayad-Gervais, S. & Schoenebeck, F. Straightforward access to N-trifluoromethyl amides, carbamates, thiocarbamates and ureas. Nature 573, 102–107 (2019).

    CAS  PubMed  Google Scholar 

  26. Arlow, S. I. & Hartwig, J. F. Synthesisof aryldifluoroamides by copper-catalyzed cross-coupling. Angew. Chem. Int. Ed. 55, 4567–4572 (2016).

    CAS  Google Scholar 

  27. Berndt, U. et al. Synthesis of a [18F]fluorobenzothiazole as potential amyloid imaging agent. J. Label. Compd. Radiopharm. 51, 137–145 (2008).

    CAS  Google Scholar 

  28. Clark, R. D. et al. Synthesis and evaluation of ureido- and vinylureidopenicillins as inhibitors of intraruminal lactic acid production. J. Med. Chem. 24, 1250–1253 (1981).

    CAS  PubMed  Google Scholar 

  29. McCrae, J. C., Morrison, E. E., MacIntyre, I. M., Dear, J. W. & Webb, D. J. Long-term adverse effects of paracetamol—a review. Br. J. Clin. Pharmacol. 84, 2218–2230 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Venkov, A. P. & Lukanov, L. K. New modification of the intramolecular α-amidoalkylation for the synthesis of 2-acyl-1,2,3,4-tetrahydroisoquinolines. Synthesis 1989, 59–61 (1989).

    Google Scholar 

Download references

Acknowledgements

We thank funding support from the National Natural Science Foundation of China (grant numbers 82373839 and 22301315), and the Hundred Talents Programme of Sun Yat-sen University.

Author information

Authors and Affiliations

Authors

Contributions

M.T. and J.Q. carried out and analysed the experiment. L.D., D.M.W. and X.Z. wrote the paper. J.L., the head of the project, conceived and supervised the project.

Corresponding authors

Correspondence to Xiangsong Zhang or Jianbo Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Scott Bagley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–42, Tables 1–8, procedural details and synthesis and characterization data (NMR spectra, HRMS data, high-performance liquid chromatography spectra and X-ray crystallographic data).

Supplementary Data

Crystallographic data for compound 20, CCDC reference 2330509.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, M., Qian, J., Deng, L. et al. Preparation, separation and storage of N-monofluoromethyl amides and carbamates. Nat. Chem. 17, 532–540 (2025). https://doi.org/10.1038/s41557-025-01767-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-025-01767-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing