Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lanthanide–nickel molecular intermetallic complexes featuring a ligand-free Ni2− anion in endohedral fullerenes

Abstract

Transition metals (TMs) typically exhibit rich redox chemistry and can be found in various oxidation states. In most cases, TMs are positively charged. Strong π-accepting ligands have been shown to stabilize molecular complexes with TMs in formal negative oxidation states. By contrast, organic-ligand-free TM anions remain rare, limited to intermetallic compounds based on third-row TMs such as gold or platinum. Here we report the synthesis of air-stable lanthanide–nickel molecular intermetallic complexes featuring a ligand-free Ni2− confined within fullerenes, namely, Tb2Ni@C82. The charged Tb2Ni lanthanide nickelide cluster forms metal-only Lewis pairs, featuring strongly polarized Tb–Ni covalent bonds with short bond lengths in the range of 2.50–2.57 Å. X-ray absorption spectroscopy supports the −2 oxidation state of Ni with 3d104s2 electron count, in line with the spectroscopic and magnetic measurements, and theoretical study. This finding opens up an efficient way to stabilize intermetallic clusters with elusive nucleophilic TM anions by confining them inside molecular carbon cages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular structures of 1 and 2.
Fig. 2: XAS of 1 and 2.
Fig. 3: LMOs of 1.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available from the article and its Supplementary Information files. The XAS data, the coordinates of the calculated structures and the data of the cluster-based LMOs have been deposited to Zenodo with the dataset identifier: https://doi.org/10.5281/zenodo.14919092 (ref. 48). Data are also available from the corresponding authors upon reasonable request. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2360128 (1), 2360129 (2), 2406091 (Y2Ni@C3v(8)-C82) and 2406092 (Y2Ni@Cs(6)-C82). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Sunderlin, L., Wang, D. & Squires, R. R. Bond strengths in first-row-metal carbonyl anions. J. Am. Chem. Soc. 115, 12060–12070 (1993).

    Article  CAS  Google Scholar 

  2. Mokhtarzadeh, C. C., Moore, C. E., Rheingold, A. L. & Figueroa, J. S. Terminal iron carbyne complexes derived from arrested CO2 reductive disproportionation. Angew. Chem. Int. Ed. 56, 10894–10899 (2017).

    Article  CAS  Google Scholar 

  3. Brennessel, W. W. & Ellis, J. E. [Fe(CNXyl)4]2−: an isolable and structurally characterized homoleptic isocyanidemetalate dianion. Angew. Chem. Int. Ed. 46, 598–600 (2007).

    Article  CAS  Google Scholar 

  4. Margulieux, G. W. et al. Isocyano analogues of [Co(CO)4]n: a tetraisocyanide of cobalt isolated in three states of charge. J. Am. Chem. Soc. 132, 5033–5035 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Gao, Y., Li, G. & Deng, L. Bis(dinitrogen)cobalt(−1) complexes with NHC ligation: synthesis, characterization, and their dinitrogen functionalization reactions affording side-on bound diazene complexes. J. Am. Chem. Soc. 140, 2239–2250 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Chi, C. et al. Alkali metal covalent bonding in nickel carbonyl complexes ENi(CO)3. Angew. Chem. Int. Ed. 58, 1732–1738 (2019).

    Article  CAS  Google Scholar 

  7. Blake, M. P., Kaltsoyannis, N. & Mountford, P. Probing the limits of alkaline earth–transition metal bonding: an experimental and computational study. J. Am. Chem. Soc. 137, 12352–12368 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Vollmer, M. V. et al. Formal nickelate(-I) complexes supported by group 13 ions. Angew. Chem. Int. Ed. 57, 7815–7819 (2018).

    Article  CAS  Google Scholar 

  9. Jansen, G. et al. Unsupported Ti–Co and Zr–Co bonds in heterobimetallic complexes: a theoretical description of metal–metal bond polarity. J. Am. Chem. Soc. 120, 7239–7251 (1998).

    Article  CAS  Google Scholar 

  10. Wang, J. Q. et al. Multiple bonding between group 3 metals and Fe(CO)3. Angew. Chem. Int. Ed. 59, 2344–2348 (2020).

    Article  CAS  Google Scholar 

  11. Wang, P. et al. Selective hydroboration of terminal alkynes catalyzed by heterometallic clusters with uranium–metal triple bonds. Chem 8, 1361–1375 (2022).

    Article  CAS  Google Scholar 

  12. Jansen, M. The chemistry of gold as an anion. Chem. Soc. Rev. 37, 1826–1835 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Sommer, A. Alloys of gold with alkali metals. Nature 152, 215 (1943).

    Article  CAS  Google Scholar 

  14. Karpov, A., Nuss, J., Wedig, U. & Jansen, M. Cs2Pt: a platinide(−II) exhibiting complete charge separation. Angew. Chem. Int. Ed. 42, 4818–4821 (2003).

    Article  CAS  Google Scholar 

  15. Karpov, A., Nuss, J., Wedig, U. & Jansen, M. Covalently bonded [Pt]-chains in BaPt: extension of the Zintl−Klemm concept to anionic transition metals? J. Am. Chem. Soc. 126, 14123–14128 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Chaboy, J. et al. X-ray absorption in Ce(Fe1−xCox)2 and Ce(Fe1−xAlx)2 compounds. Phys. Rev. B 62, 468–475 (2000).

    Article  CAS  Google Scholar 

  17. Burns, C. P. et al. Structure and magnetization dynamics of Dy–Fe and Dy–Ru bonded complexes. Angew. Chem. Int. Ed. 57, 8144–8148 (2018).

    Article  CAS  Google Scholar 

  18. Ramirez, B. L., Sharma, P., Eisenhart, R. J., Gagliardi, L. & Lu, C. C. Bimetallic nickel-lutetium complexes: tuning the properties and catalytic hydrogenation activity of the Ni site by varying the Lu coordination environment. Chem. Sci. 10, 3375–3384 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Butovskii, M. V. et al. Molecules containing rare-earth atoms solely bonded by transition metals. Nat. Chem. 2, 741–744 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Magott, M., Brzozowska, M., Baran, S., Vieru, V. & Pinkowicz, D. An intermetallic molecular nanomagnet with the lanthanide coordinated only by transition metals. Nat. Commun. 13, 2014 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Popov, A. A., Yang, S. & Dunsch, L. Endohedral fullerenes. Chem. Rev. 113, 5989–6113 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Hu, Z. & Yang, S. Endohedral metallofullerene molecular nanomagnets. Chem. Soc. Rev. 53, 2863–2897 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Solid C60: a new form of carbon. Nature 347, 354–358 (1990).

    Article  Google Scholar 

  24. Buschow, K. Intermetallic compounds of rare-earth and 3d transition metals. Rep. Prog. Phys. 40, 1179 (1977).

    Article  CAS  Google Scholar 

  25. Xu, Y.-Y. et al. Flexible decapyrrylcorannulene hosts. Nat. Commun. 10, 485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119, 2326–2337 (2015).

    Article  PubMed  Google Scholar 

  27. Fang, W., Zhu, Q. & Zhu, C. Recent advances in heterometallic clusters with f-block metal–metal bonds: synthesis, reactivity and applications. Chem. Soc. Rev. 51, 8434–8449 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Ramirez, B. L. & Lu, C. C. Rare-earth supported nickel catalysts for alkyne semihydrogenation: chemo- and regioselectivity impacted by the Lewis acidity and size of the support. J. Am. Chem. Soc. 142, 5396–5407 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Xu, W. et al. An experimentally observed trimetallofullerene Sm3@Ih-C80: encapsulation of three metal atoms in a cage without a nonmetallic mediator. J. Am. Chem. Soc. 135, 4187–4190 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y. et al. Electrophilic trifluoromethylation of dimetallofullerene anions en route to air-stable single-molecule magnets with high blocking temperature of magnetization. J. Am. Chem. Soc. 143, 18139–18149 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, C.-H. et al. Selective arc-discharge synthesis of Dy2S-clusterfullerenes and their isomer-dependent single molecule magnetism. Chem. Sci. 8, 6451–6465 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cutsail Iii, G. E. & DeBeer, S. Challenges and opportunities for applications of advanced X-ray spectroscopy in catalysis research. ACS Catal. 12, 5864–5886 (2022).

    Article  CAS  Google Scholar 

  33. Yang, H. B. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  CAS  Google Scholar 

  34. Geoghegan, B. L. et al. Combining valence-to-core X-ray emission and Cu K-edge X-ray absorption spectroscopies to experimentally assess oxidation state in organometallic Cu (I)/(II)/(III) complexes. J. Am. Chem. Soc. 144, 2520–2534 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bader, R. F. Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985).

    Article  CAS  Google Scholar 

  36. Dunsch, L. et al. Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. J. Am. Chem. Soc. 132, 5413–5421 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  Google Scholar 

  38. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  39. Hu, Z. et al. High-temperature magnetic blocking in a monometallic dysprosium azafullerene single-molecule magnet. Chem 9, 3613–3622 (2023).

    Article  CAS  Google Scholar 

  40. Xin, J. et al. Short didysprosium covalent bond enables high magnetization blocking temperature of a direct 4f–4f coupled dinuclear single-molecule magnet. J. Am. Chem. Soc. 146, 17600–17605 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Chilton, N. F., Anderson, R. P., Turner, L. D., Soncini, A. & Murray, K. S. PHI: a powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 34, 1164–1175 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Gaussian 09 v. Revision D.01 (Gaussian, Inc., 2009).

  43. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  44. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  45. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Lu, T. & Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  47. Fdez. Galván, I. et al. OpenMolcas: from source code to insight. J. Chem. Theory Comput. 15, 5925–5964 (2019).

    Article  PubMed  Google Scholar 

  48. Chuai, P. et al. Data from the manuscript: ‘Lanthanide–nickel molecular intermetallic complexes featuring a ligand-free Ni2− anion in endohedral fullerenes’. Zenodo https://doi.org/10.5281/zenodo.14919092 (2025).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22275002 to Z.S., 52302052 to Z.H., 51925206 to S.Y. and U1932214 to S.Y.), the National Basic Research Program of China (2017YFA0204901 to Z.S.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0450301 to S.Y.), the Fundamental Research Funds for the Central Universities (20720220009 to S.Y. and WK2060000093 to Z.H.), the Anhui Provincial Natural Science Foundation (2308085MB33 to Z.H.), the National Synchrotron Radiation Laboratory (KY2060000240 to Z.H.) and the Spanish MCIU (2D-SPICE PID2023-149309OB-I00, co-financed by FEDER, to E.C. and Excellence Unit ‘María de Maeztu’ CEX2024-001467-M to E.C.). We thank the staff in the BL17B beamline of the National Facility for Protein Science Shanghai (NFPS) and BL14W1 X-ray absorption fine structure spectroscopy (XAFS) beamline at the Shanghai Synchrotron Radiation Facility for assistance during data collection.

Author information

Authors and Affiliations

Authors

Contributions

Z.H., E.C., S.Y. and Z.S. conceived and designed the experiments. P.C., Z.H., Y.-R.Y. and Z.J. performed the experiments and carried out the analysis. Z.H. and A.U. performed the theoretical studies. Y.Z., W.C. and M.C. contributed to the synthesis, X-ray absorption analysis and crystallographic characterizations. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Ziqi Hu, Eugenio Coronado, Shangfeng Yang or Zujin Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Molecular structures of Y2Ni@C3v(8)-C82 and Y2Ni@Cs(6)-C82.

a,b Thermal ellipsoid plots of Y2Ni@C3v(8)-C82·NiIIOEP·C6H6 (a) and Y2Ni@Cs(6)-C82·2(DPC)·2C7H8 (b); only the major sites of Y and Ni are shown, and the solvent molecules are omitted for clarity. c,d Front views of Y2Ni@C3v(8)-C82 (c) and Y2Ni@Cs(6)-C82 (d). e,f Close-up views of the Y2Ni clusters and the adjacent cage fragments in Y2Ni@C3v(8)-C82 (e) and Y2Ni@Cs(6)-C82 (f), annotated with experimental Y–Ni bond lengths, Y-to-ring centroid and Y-to-bond centroid distances, and Y–Ni–Y angles. Y is represented by green, Ni by yellow, C by gray and N by cyan.

Supplementary information

Supplementary Information

Supplementary Figs. 1–30 and Tables 1–14.

Supplementary Data 1

Coordinates of the optimized structure of compound 2 (Supplementary Fig. 26).

Supplementary Data 2

Coordinates of the optimized structure of Y2Ni@C3v(8)-C82 (Supplementary Fig. 29).

Supplementary Data 3

Coordinates of the optimized structure of Y2Ni@Cs(6)-C82 (Supplementary Fig. 30).

Supplementary Data 4

Coordinates of the optimized structure of compound 1 (Fig. 3).

Supplementary Data 5

Crystallographic data for compound 1 (CCDC 2360128).

Supplementary Data 6

Crystallographic data for compound 2 (CCDC 2360129).

Supplementary Data 7

Crystallographic data for Y2Ni@C3v(8)-C82 (CCDC 2406091).

Supplementary Data 8

Crystallographic data for Y2Ni@Cs(6)-C82 (CCDC 2406092).

Source data

Source Data Fig. 2

Data of normalized X-ray absorption spectra and their derivatives of compounds 1 and 2 and reference compounds of Ni and Tb.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuai, P., Hu, Z., Yao, YR. et al. Lanthanide–nickel molecular intermetallic complexes featuring a ligand-free Ni2− anion in endohedral fullerenes. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-01802-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-025-01802-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing