Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Demand-side solutions to climate change mitigation consistent with high levels of well-being

Abstract

Mitigation solutions are often evaluated in terms of costs and greenhouse gas reduction potentials, missing out on the consideration of direct effects on human well-being. Here, we systematically assess the mitigation potential of demand-side options categorized into avoid, shift and improve, and their human well-being links. We show that these options, bridging socio-behavioural, infrastructural and technological domains, can reduce counterfactual sectoral emissions by 40–80% in end-use sectors. Based on expert judgement and an extensive literature database, we evaluate 306 combinations of well-being outcomes and demand-side options, finding largely beneficial effects in improvement in well-being (79% positive, 18% neutral and 3% negative), even though we find low confidence on the social dimensions of well-being. Implementing such nuanced solutions is based axiomatically on an understanding of malleable rather than fixed preferences, and procedurally on changing infrastructures and choice architectures. Results demonstrate the high mitigation potential of demand-side mitigation options that are synergistic with well-being.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mitigation potentials in end-use sector classified in ASI options.
Fig. 2: Ratio of weighted sum of synergies between SDGs and energy demand/supply solutions, and weighted sum of trade-offs between SDGs and demand/supply solutions.
Fig. 3: Effects of demand-side options on well-being in 19 different categories.

Similar content being viewed by others

Data availability

All data used for Figs. 1 and 3 are fully presented in the Extended data. The literature database155 is openly available: https://doi.org/10.5281/zenodo.5163965

References

  1. Mundaca, L., Ürge-Vorsatz, D. & Wilson, C. Demand-side approaches for limiting global warming to 1.5 °C. Energy Effic. 12, 343–362 (2019).

    Article  Google Scholar 

  2. Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

    Article  Google Scholar 

  3. Creutzig, F. et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 8, 268–271 (2018).

    Article  Google Scholar 

  4. IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  5. Creutzig, F. et al. Beyond technology: demand-side solutions for climate change mitigation. Annu. Rev. Environ. Resour. 41, 173–198 (2016).

    Article  Google Scholar 

  6. Deeming, C. Addressing the social determinants of subjective wellbeing: the latest challenge for social policy. J. Soc. Policy 42, 541–565 (2013).

    Article  Google Scholar 

  7. Stiglitz, J., Sen, A. & Fitoussi, J.-P. The Measurement of Economic Performance and Social Progress Revisited: Reflections and Overview (OFCE, 2009); https://www.researchgate.net/publication/278828759_The_Measurement_of_Economic_Performance_and_Social_Progress_Revisited_Reflections_and_Overview

  8. Durand, M. The OECD better life initiative: how’s life? and the measurement of well-being. Rev. Income Wealth 61, 4–17 (2015).

    Article  Google Scholar 

  9. Fleurbaey, M. & Blanchet, D. Beyond GDP: Measuring Welfare and Assessing Sustainability (Oxford Univ. Press, 2013).

  10. Roger, C. Well-being in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (The Metaphysics Research Lab, 2008); http://plato.stanford.edu/archives/win2008/entries/well-being

  11. Mrkajic, V., Vukelic, D. & Mihajlov, A. Reduction of CO2 emission and non-environmental co-benefits of bicycle infrastructure provision: the case of the University of Novi Sad, Serbia. Renew. Sustain. Energy Rev. 49, 232–242 (2015).

    Article  CAS  Google Scholar 

  12. Lamb, W. F. & Steinberger, J. K. Human well-being and climate change mitigation. Wiley Interdiscip. Rev. Clim. Change 8, e485 (2017).

    Google Scholar 

  13. Mattauch, L., Ridgway, M. & Creutzig, F. Happy or liberal? Making sense of behavior in transport policy design. Transp. Res. D Transp. Environ. 45, 64–83 (2015).

  14. Sen, A. in The Quality of Life (eds Nussbaum, M. & Sen, A.) Ch. 5 (Clarendon Press, 1993); https://scholar.harvard.edu/sen/publications/capability-and-well-being-0

  15. Max-Neef, M., Elizalde, A. & Hopenhayn, M. in Real-Life Economics: Understanding Wealth Creation (eds Ekins, P. & Max-Neef, M.) 197–213 (Routledge, 1992).

  16. Dalkmann, H. & Brannigan, C. Transport and Climate Change. Sustainable Transport: A Sourcebook for Policy-makers in Developing Cities (GTZ, 2007); https://lib.icimod.org/record/13155

  17. Bongardt, D. et al. Low-Carbon Land Transport: Policy Handbook (Routledge, 2013).

  18. van den Berg, N. J. et al. Improved modelling of lifestyle changes in integrated assessment models: cross-disciplinary insights from methodologies and theories. Energy Strategy Rev. 26, 100420 (2019).

    Article  Google Scholar 

  19. Roy, J., Some, S., Das, N. & Pathak, M. Demand side climate change mitigation actions and SDGs: literature review with systematic evidence search. Environ. Res. Lett. 16, 043003 (2021).

    Article  CAS  Google Scholar 

  20. Food Wastage Footprint: Full-Cost Accounting (FAO, 2014).

  21. Schanes, K., Dobernig, K. & Gözet, B. Food waste matters–a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018).

    Article  Google Scholar 

  22. Gunders, D. & Bloom, J. Wasted: How America is Losing up to 40 Percent of its Food from Farm to Fork to Landfill (NRDC, 2017); https://www.nrdc.org/resources/wasted-how-america-losing-40-percent-its-food-farm-fork-landfill

  23. Wilson, N. L., Rickard, B. J., Saputo, R. & Ho, S.-T. Food waste: the role of date labels, package size, and product category. Food Qual. Prefer. 55, 35–44 (2017).

    Article  Google Scholar 

  24. Shukla, P. R. et al. (eds) Special Report on Climate Change and Land (IPCC, 2019).

  25. Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 811–922 (IPCC, Cambridge Univ. Press, 2014).

  26. Creutzig, F. Evolving narratives of low-carbon futures in transportation. Transp. Rev. 36, 341–360 (2015).

    Article  Google Scholar 

  27. McCollum, D. L. et al. Improving the behavioral realism of global integrated assessment models: an application to consumers’ vehicle choices. Transp. Res. D Transp. Environ. 55, 322–342 (2017).

    Article  Google Scholar 

  28. Geels, F. W., Sovacool, B. K., Schwanen, T. & Sorrell, S. The socio-technical dynamics of low-carbon transitions. Joule 1, 463–479 (2017).

    Article  Google Scholar 

  29. Larkin, A., Hoolohan, C. & McLachlan, C. Embracing context and complexity to address environmental challenges in the water-energy-food nexus. Futures 123, 102612 (2020).

    Article  Google Scholar 

  30. Gota, S., Huizenga, C., Peet, K., Medimorec, N. & Bakker, S. Decarbonising transport to achieve Paris Agreement targets. Energy Effic. 12, 363–386 (2019).

    Article  Google Scholar 

  31. Shabanpour, R., Golshani, N., Tayarani, M., Auld, J. & Mohammadian, A. Analysis of telecommuting behavior and impacts on travel demand and the environment. Transp. Res. D Transp. Environ. 62, 563–576 (2018).

    Article  Google Scholar 

  32. Riggs, W. Telework and sustainable travel during the COVID-19 era. Preprint at SSRN https://doi.org/10.2139/ssrn.3638885 (2020).

  33. Policy Pathways: A Tale of Renewed Cities (International Energy Agency, 2013).

  34. Creutzig, F. et al. Transport: a roadblock to climate change mitigation? Science 350, 911–912 (2015).

    Article  CAS  Google Scholar 

  35. Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P. & Seto, K. C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl Acad. Sci. USA 112, 6283–6288 (2015).

    Article  CAS  Google Scholar 

  36. Khalili, S., Rantanen, E., Bogdanov, D. & Breyer, C. Global transportation demand development with impacts on the energy demand and greenhouse gas emissions in a climate-constrained world. Energies 12, 3870 (2019).

    Article  CAS  Google Scholar 

  37. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  38. Hertwich, E. G. et al. Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environ. Res. Lett. 14, 043004 (2019).

    Article  CAS  Google Scholar 

  39. Pauliuk, S. et al. Global scenarios of resource and emissions savings from systemic material efficiency in buildings and cars. Nat. Commun. 12, 5097 (2021).

  40. Belussi, L. et al. A review of performance of zero energy buildings and energy efficiency solutions. J. Build. Eng. 25, 100772 (2019).

    Article  Google Scholar 

  41. Bodart, M. & De Herde, A. Global energy savings in offices buildings by the use of daylighting. Energy Build. 34, 421–429 (2002).

    Article  Google Scholar 

  42. Ürge-Vorsatz, D. et al. Advances toward a net-zero global building sector. Annu. Rev. Environ. Resour. 45, 227–269 (2020).

    Article  Google Scholar 

  43. Roy, J., Dowd, A., Muller, A., Pal, S. & Prata, N. in Global Energy Assessment—Toward a Sustainable Future (eds Global Energy Assessment Writing Team) 1527–1548 (Cambridge Univ. Press/The International Institute for Applied Systems Analysis, 2012).

  44. Dixit, M. K. 3-D printing in building construction: a literature review of opportunities and challenges of reducing life cycle energy and carbon of buildings. IOP Conf. Ser. Earth Environ. Sci. 290, 012012 (2019).

    Article  Google Scholar 

  45. Nadel, S. & Ungar, L. Halfway There: Energy Efficiency Can Cut Energy Use and Greenhouse Gas Emissions in Half by 2050 (ACEEE, 2019); https://www.aceee.org/research-report/u1907

  46. Nisa, C. F., Bélanger, J. J., Schumpe, B. M. & Faller, D. G. Meta-analysis of randomised controlled trials testing behavioural interventions to promote household action on climate change. Nat. Commun. 10, 4545 (2019).

    Article  CAS  Google Scholar 

  47. Wang, H., Chen, W. & Shi, J. Low carbon transition of global building sector under 2- and 1.5-degree targets. Appl. Energy 222, 148–157 (2018).

    Article  Google Scholar 

  48. Hook, A., Court, V., Sovacool, B. K. & Sorrell, S. A systematic review of the energy and climate impacts of teleworking. Environ. Res. Lett. 15, 09003 (2020).

    Article  Google Scholar 

  49. Ewing, R. & Cervero, R. ‘Does compact development make people drive less?’ The answer is yes. J. Am. Plann. Assoc. 83, 19–25 (2017).

    Article  Google Scholar 

  50. Creutzig, F. Making Smart Mobility Sustainable (Israel Public Policy Institute, 2020); https://www.ippi.org.il/smart-shared-mobility-experts-workshop

  51. Vecchio, R. & Cavallo, C. Increasing healthy food choices through nudges: a systematic review. Food Qual. Prefer. 78, 103714 (2019).

    Article  Google Scholar 

  52. Bauer, J. M., Bietz, S., Rauber, J. & Reisch, L. A. Nudging healthier food choices in a cafeteria setting: a sequential multi-intervention field study. Appetite 160, 105106 (2021).

    Article  Google Scholar 

  53. Bogueva, D., Marinova, D. & Raphaely, T. Reducing meat consumption: the case for social marketing. Asia Pac. J. Mark. Logist. 29, 477–500 (2017).

    Article  Google Scholar 

  54. Delgado, L. & Shealy, T. Opportunities for greater energy efficiency in government facilities by aligning decision structures with advances in behavioral science. Renew. Sustain. Energy Rev. 82, 3952–3961 (2018).

    Article  Google Scholar 

  55. Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Article  Google Scholar 

  56. Millward-Hopkins, J., Steinberger, J. K., Rao, N. D. & Oswald, Y. Providing decent living with minimum energy: a global scenario. Glob. Environ. Change 65, 102168 (2020).

    Article  Google Scholar 

  57. Keyßer, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021).

    Article  Google Scholar 

  58. World Energy Outlook 2020 (IEA, 2020); https://www.iea.org/reports/world-energy-outlook-2020

  59. Grieshop, A. P., Marshall, J. D. & Kandlikar, M. Health and climate benefits of cookstove replacement options. Energy Policy 39, 7530–7542 (2011).

    Article  CAS  Google Scholar 

  60. Woodcock, J. et al. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet 374, 1930–1943 (2009).

    Article  Google Scholar 

  61. Creutzig, F., Mühlhoff, R. & Römer, J. Decarbonizing urban transport in European cities: four cases show possibly high co-benefits. Environ. Res. Lett. 7, 044042 (2012).

    Article  Google Scholar 

  62. Ahmad, S., Goodman, A., Creutzig, F., Woodcock, J. & Tainio, M. A comparison of the health and environmental impacts of increasing urban density against increasing propensity to walk and cycle in Nashville, USA. Cities Health 4, 55–65 (2020).

    Article  Google Scholar 

  63. Springmann, M. et al. Mitigation potential and global health impacts from emissions pricing of food commodities. Nat. Clim. Change 7, 69–74 (2017).

    Article  Google Scholar 

  64. Mazorra, J., Sánchez-Jacob, E., de la Sota, C., Fernández, L. & Lumbreras, J. A comprehensive analysis of cooking solutions co-benefits at household level: healthy lives and well-being, gender and climate change. Sci. Total Environ. 707, 135968 (2020).

    Article  CAS  Google Scholar 

  65. Burton, E. in Sustainable Urban Form (eds Burton, E. et al.) 19–29 (Routledge, 2000).

  66. Raman, S. Designing a liveable compact city: physical forms of city and social life in urban neighbourhoods. Built Environ. 36, 63–80 (2010).

    Article  Google Scholar 

  67. Golden, T. D., Veiga, J. F. & Dino, R. N. The impact of professional isolation on teleworker job performance and turnover intentions: does time spent teleworking, interacting face-to-face, or having access to communication-enhancing technology matter? J. Appl. Psychol. 93, 1412–1421 (2008).

    Article  Google Scholar 

  68. Doray, N. Cognitive Biases in Corporate Climate Action: How Industry Leaders are Mitigating Cognitive Bias in the Transition to a Low-Carbon Economy. PhD thesis, York Univ. (2019).

  69. Mazur, C., Contestabile, M., Offer, G. J. & Brandon, N. P. Assessing and comparing German and UK transition policies for electric mobility. Environ. Innov. Soc. Transit. 14, 84–100 (2015).

    Article  Google Scholar 

  70. Wang, T. et al. Health co-benefits of achieving sustainable net-zero greenhouse gas emissions in California. Nat. Sustain. 3, 597–605 (2020).

  71. Karlsson, M., Alfredsson, E. & Westling, N. Climate policy co-benefits: a review. Clim. Policy 20, 292–316 (2020).

    Article  Google Scholar 

  72. Klimaneutrales Deutschland 2045: Wie Deutschland seine Klimaziele schon vor 2050 erreichen kann (Prognos, Öko-Institut, Wuppertal-Institut, 2021); https://www.agora-energiewende.de/presse/neuigkeiten-archiv/klimaneutralitaet-in-deutschland-bereits-2045-moeglich/ (2021).

  73. Giallouros, G., Kouis, P., Papatheodorou, S. I., Woodcock, J. & Tainio, M. The long-term impact of restricting cycling and walking during high air pollution days on all-cause mortality: health impact assessment study. Environ. Int. 140, 105679 (2020).

    Article  CAS  Google Scholar 

  74. Ürge-Vorsatz, D., Herrero, S. T., Dubash, N. K. & Lecocq, F. Measuring the co-benefits of climate change mitigation. Annu. Rev. Environ. Resour. 39, 549–582 (2014).

    Article  Google Scholar 

  75. Dastrup, S. R., Zivin, J. G., Costa, D. L. & Kahn, M. E. Understanding the solar home price premium: electricity generation and ‘green’ social status. Eur. Economic Rev. 56, 961–973 (2012).

    Article  Google Scholar 

  76. Ramakrishnan, A. & Creutzig, F. Status consciousness in energy consumption decisions: a systematic review. Environ. Res. Lett. 16, 053010 (2021).

  77. Springmann, M. et al. Health-motivated taxes on red and processed meat: a modelling study on optimal tax levels and associated health impacts. PLoS ONE 13, e0204139 (2018).

    Article  Google Scholar 

  78. Sulikova, S., van den Bijgaart, I., Klenert, D. & Mattauch, L. Optimal Fuel Taxation with Suboptimal Health Choices Working Paper in Economics 794 (Univ. of Gothenburg, 2020); https://ideas.repec.org/p/hhs/gunwpe/0794.html

  79. Kuhnhenn, K., Costa, L., Mahnke, E., Schneider, L. & Lange, S. A Societal Transformation Scenario for Staying Below 1.5°C (Heinrich Böll Foundation and Konzeptwerk Neue Ökonomie, 2020); https://www.boell.de/en/2020/12/09/societal-transformation-scenario-staying-below-15degc

  80. Niamir, L. et al. Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions. Clim. Change 158, 141–160 (2020).

    Article  Google Scholar 

  81. Ahl, A., Accawi, G., Hudey, B., Lapsa, M. & Nichols, T. Occupant behavior for energy conservation in commercial buildings: lessons learned from competition at the Oak Ridge National Laboratory. Sustainability 11, 3297 (2019).

    Article  Google Scholar 

  82. Institute for Global Environmental Strategies, Aalto University & D-mat ltd 1.5-Degree Lifestyles: Targets and Options for Reducing Lifestyle Carbon Footprints (Institute for Global Environmental Strategies, 2019); https://www.iges.or.jp/en/publication_documents/pub/technicalreport/en/6719/15_Degree_Lifestyles_MainReport.pdf

  83. Net Zero by 2050: From Whether to How (NECF, 2018); https://europeanclimate.org/wp-content/uploads/2019/11/09-18-net-zero-by-2050-from-whether-to-how.pdf

  84. Mieux Vivre en Nord-Pas de Calais (Virage-énergie Nord-Pas de Calais, 2016); http://www.virage-energie.org/wp-content/uploads/2016/01/Virage-%C3%A9nergie-NPdC_Rapport-complet-%C3%A9tude-mieux-vivre_mars2016-1.pdf

  85. Niamir, L., Ivanova, O. & Filatova, T. Economy-wide impacts of behavioral climate change mitigation: linking agent-based and computable general equilibrium models. Environ. Model. Softw. 134, 104839 (2020).

    Article  Google Scholar 

  86. Mastrucci, A. & Rao, N. D. Bridging India’s housing gap: lowering costs and CO2 emissions. Build. Res. Inf. 47, 8–23 (2019).

    Article  Google Scholar 

  87. Mata, É., Kalagasidis, A. S. & Johnsson, F. Contributions of building retrofitting in five member states to EU targets for energy savings. Renew. Sustain. Energy Rev. 93, 759–774 (2018).

    Article  Google Scholar 

  88. Mata, É. et al. A map of roadmaps for zero and low energy and carbon buildings worldwide. Environ. Res. Lett. 15, 113003 (2020).

    Article  Google Scholar 

  89. Ellsworth-Krebs, K., Reid, L. & Hunter, C. J. Home comfort and ‘peak household’: implications for energy demand. Hous. Theory Soc. 38, 1–20 (2019).

    Google Scholar 

  90. Pomponi, F. et al. A novel method for estimating emissions reductions caused by the restriction of mobility: the case of the COVID-19 pandemic. Environ. Sci. Technol. Lett. 8, 46–52 (2021).

    Article  CAS  Google Scholar 

  91. Brand, C., Dons, E. & Anaya-Boig, E. The climate change mitigation effects of active travel. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-39219/v1 (2021).

  92. Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

    Article  CAS  Google Scholar 

  93. Senbel, M., Giratalla, W., Zhang, K. & Kissinger, M. Compact development without transit: life-cycle GHG emissions from four variations of residential density in Vancouver. Environ. Plan. A 46, 1226–1243 (2014).

    Article  Google Scholar 

  94. Sheppard, C. J. R., Jenn, A. T., Greenblatt, J. B., Bauer, G. S. & Gerke, B. F. Private versus shared, automated electric vehicles for U.S. personal mobility: energy use, greenhouse gas emissions, grid integration, and cost impacts. Environ. Sci. Technol. 55, 3229–3239 (2021).

    Article  CAS  Google Scholar 

  95. Shared Mobility Simulations for Lyon (ITF, 2020); https://www.itf-oecd.org/shared-mobility-simulations-lyon

  96. Good to Go? Assessing the Environmental Performance of New Mobility (ITF, 2020); https://www.itf-oecd.org/good-go-assessing-environmental-performance-new-mobility

  97. Transition to Shared Mobility (ITF, 2017); https://www.itf-oecd.org/transition-shared-mobility

  98. Shared Mobility Simulations for Helsinki (ITF, 2017); https://www.itf-oecd.org/sites/default/files/docs/shared-mobility-simulations-helsinki.pdf

  99. Shared Mobility: Innovation for Liveable Cities (ITF, 2016); https://www.itf-oecd.org/shared-mobility-innovation-liveable-cities

  100. Ehrenberger, S. et al. Land transport development in three integrated scenarios for Germany – technology options, energy demand and emissions. Transp. Res. D Transp. Environ. 90, 102669 (2021).

    Article  Google Scholar 

  101. Hou, F. et al. Comprehensive analysis method of determining global long-term GHG mitigation potential of passenger battery electric vehicles. J. Clean. Prod. 289, 125137 (2021).

    Article  CAS  Google Scholar 

  102. Hampshire, K., German, R., Pridmore, A. & Fons, J. Electric Vehicles from Life Cycle and Circular Economy Perspectives (electrive.com, 2018); https://www.electrive.com/study-guide/electric-vehicles-from-life-cycle-and-circular-economy-perspectives/

  103. Hill, G., Heidrich, O., Creutzig, F. & Blythe, P. The role of electric vehicles in near-term mitigation pathways and achieving the UK’s carbon budget. Appl. Energy 251, 113111 (2019).

    Article  Google Scholar 

  104. Plötz, P., Funke, S. A., Jochem, P. & Wietschel, M. CO2 mitigation potential of plug-in hybrid electric vehicles larger than expected. Sci. Rep. 7, 16493 (2017).

    Article  Google Scholar 

  105. Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5° and 2 °C climate change targets. Science 370, 705–708 (2020).

    Article  CAS  Google Scholar 

  106. Makov, T., Shepon, A., Krones, J., Gupta, C. & Chertow, M. Social and environmental analysis of food waste abatement via the peer-to-peer sharing economy. Nat. Commun. 11, 1156 (2020).

    Article  CAS  Google Scholar 

  107. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article  CAS  Google Scholar 

  108. Hiç, C., Pradhan, P., Rybski, D. & Kropp, J. P. Food surplus and its climate burdens. Environ. Sci. Technol. 50, 4269–4277 (2016).

    Article  Google Scholar 

  109. Semba, R. D. et al. Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions. Nat. Food 1, 481–484 (2020).

    Article  Google Scholar 

  110. Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).

    Article  Google Scholar 

  111. Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  Google Scholar 

  112. Parodi, A. et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 1, 782–789 (2018).

    Article  Google Scholar 

  113. Hertwich, E., Lifset, R., Pauliuk, S. & Heeren, N. Resource Efficiency and Climate Change: Material Efficiency Strategies for a Low-Carbon Future (IRP, 2020); https://stg-wedocs.unep.org/bitstream/handle/20.500.11822/34351/RECCR.pdf?sequence=1&isAllowed=y

  114. Pauliuk, S. et al. Linking service provision to material cycles: a new framework for studying the resource efficiency–climate change (RECC) nexus. J. Ind. Ecol. 25, 260–273 (2021).

    Article  Google Scholar 

  115. Tracking Industry 2020 (IEA, 2020); https://www.iea.org/reports/tracking-industry-2020

  116. Allwood, J. M. & Cullen, J. M. Sustainable Materials: With Both Eyes Open (Cambridge Univ. Press, 2012).

  117. Carruth, M. A., Allwood, J. M. & Moynihan, M. C. The technical potential for reducing metal requirements through lightweight product design. Resour. Conserv. Recycl. 57, 48–60 (2011).

    Article  Google Scholar 

  118. Lausselet, C., Urrego, J. P. F., Resch, E. & Brattebø, H. Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock. J. Ind. Ecol. 25, 419–434 (2021).

    Article  CAS  Google Scholar 

  119. Cooper, D. R., Skelton, A. C. H., Moynihan, M. C. & Allwood, J. M. Component level strategies for exploiting the lifespan of steel in products. Resour. Conserv. Recycl. 84, 24–34 (2014).

    Article  Google Scholar 

  120. Completing the Picture: How the Circular Economy Tackles Climate Change (Ellen MacArthur Foundation, 2019); https://www.ellenmacarthurfoundation.org/assets/downloads/Completing_The_Picture_How_The_Circular_Economy-_Tackles_Climate_Change_V3_26_September.pdf

  121. Material Efficiency in Clean Energy Transitions (IEA, 2019); https://www.iea.org/reports/material-efficiency-in-clean-energy-transitions

  122. The Circular Economy – A Powerful Force for Climate Mitigation (Material Economics, 2018); https://materialeconomics.com/publications/the-circular-economy-a-powerful-force-for-climate-mitigation-1

  123. Crijns-Graus, W., Yue, H., Zhang, S., Kermeli, K. & Worrell, E. in Encyclopedia of Renewable and Sustainable Materials (eds Hashmi, S. & Choudhury, I. A.) 377–388 (Elsevier, 2020).

  124. Annual Review 2020 (IATA, 2020); https://www.iata.org/contentassets/c81222d96c9a4e0bb4ff6ced0126f0bb/iata-annual-review-2020.pdf

  125. Schäfer, A. W. et al. Technological, economic and environmental prospects of all-electric aircraft. Nat. Energy 4, 160–166 (2019).

    Article  Google Scholar 

  126. Sharmina, M. et al. Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2 °C. Clim. Policy 21, 455–474 (2021).

    Article  Google Scholar 

  127. Bouman, E. A., Lindstad, E., Rialland, A. I. & Strømman, A. H. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping–a review. Transp. Res. D Transp. Environ. 52, 408–421 (2017).

    Article  Google Scholar 

  128. McKinnon, A. Decarbonizing Logistics: Distributing Goods in a Low Carbon World (Kogan Page Publishers, 2018).

  129. Decarbonising Maritime Transport (ITF, 2018); https://www.itf-oecd.org/decarbonising-maritime-transport

  130. Roy, J. et al. in IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 5 (WMO, 2018); https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter5_Low_Res.pdf

  131. O’Reilly, J., Isenhour, C., McElwee, P. & Orlove, B. Climate change: expanding anthropological possibilities. Annu. Rev. Anthropol. 49, 13–29 (2020).

    Article  Google Scholar 

  132. Creutzig, F. Limits to liberalism: considerations for the Anthropocene. Ecol. Econ. 177, 106763 (2020).

    Article  Google Scholar 

  133. Mattauch, L., Hepburn, C. & Stern, N. Pigou Pushes Preferences: Decarbonisation and Endogenous Values Climate Change Economics and Policy Working Paper 346/Grantham Research Institute on Climate Change and the Environment Working Paper 314 (London School of Economics and Political Science, 2018); https://www.lse.ac.uk/granthaminstitute/wp-content/uploads/2018/12/working-paper-314-Mattauch-et-al.pdf

  134. Hawkes, C. et al. Smart food policies for obesity prevention. Lancet 385, 2410–2421 (2015).

    Article  Google Scholar 

  135. Larcom, S., Rauch, F. & Willems, T. The benefits of forced experimentation: striking evidence from the London underground network. Q. J. Econ. 132, 2019–2055 (2017).

    Article  Google Scholar 

  136. Bamberg, S., Rölle, D. & Weber, C. Does habitual car use not lead to more resistance to change of travel mode? Transportation 30, 97–108 (2003).

    Article  Google Scholar 

  137. Weinberger, R. & Goetzke, F. Unpacking preference: how previous experience affects auto ownership in the United States. Urban Stud. 47, 2111–2128 (2010).

  138. Grinblatt, M., Keloharju, M. & Ikäheimo, S. Social influence and consumption: evidence from the automobile purchases of neighbors. Rev. Econ. Stat. 90, 735–753 (2008).

    Article  Google Scholar 

  139. Baranzini, A., Carattini, S. & Péclat, M. What Drives Social Contagion in the Adoption of Solar Photovoltaic Technology GRI Working Paper 270 (Grantham Research Institute on Climate Change and the Environment, 2017); https://ideas.repec.org/p/lsg/lsgwps/wp270.html

  140. Lanz, B., Wurlod, J.-D., Panzone, L. & Swanson, T. The behavioral effect of pigovian regulation: evidence from a field experiment. J. Environ. Econ. Manage. 87, 190–205 (2018).

    Article  Google Scholar 

  141. Rivers, N. & Schaufele, B. Salience of carbon taxes in the gasoline market. J. Environ. Econ. Manage. 74, 23–36 (2015).

    Article  Google Scholar 

  142. Andersson, J. J. Carbon taxes and CO2 emissions: Sweden as a case study. Am. Econ. J. Econ. Policy 11, 1–30 (2019).

    Article  Google Scholar 

  143. Stern, N. Why Are We Waiting? The Logic, Urgency, and Promise of Tackling Climate Change (MIT Press, 2015).

  144. Brulle, R. J. & Aronczyk, M. in Routledge Handbook of Global Sustainability Governance (eds Kalfagianni, A. et al.) Ch. 17 (Routledge, 2019).

  145. Fleurbaey, M. & Blanchet, D. Beyond GDP: Measuring Welfare and Assessing Sustainability (Oxford Univ. Press, 2013).

  146. Roger, C. Well-being in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (The Metaphysics Research Lab, 2008); http://plato.stanford.edu/archives/win2008/entries/well-being

  147. Nussbaum, M. Creating Capabilities (Harvard Univ. Press, 2011).

  148. Doyal, L. & Gough, I. in Mixed Economies in Europe (eds Blaas, W. & Foster, J.) 178–199 (Edward Elgar Publishing, 1993).

  149. Gough, I. Heat, Greed and Human Need: Climate Change, Capitalism and Sustainable Wellbeing (Edward Elgar Publishing, 2017).

  150. Alkire, S. in Wellbeing in Developing Countries (eds Gough, I. & Allister McGregor, J.) 93–108 (Cambridge Univ. Press, 2007).

  151. Von Weizsäcker, C. C. Notes on endogenous change of tastes. J. Econ. Theory 3, 345–372 (1971).

    Article  Google Scholar 

  152. Fleurbaey, M. & Tadenuma, K. Universal social orderings: an integrated theory of policy evaluation, inter-society comparisons, and interpersonal comparisons. Rev. Econ. Stud. 81, 1071–1101 (2014).

    Article  Google Scholar 

  153. Mattauch, L. & Hepburn, C. Climate policy when preferences are endogenous—and sometimes they are. Midwest Stud. Philos. 40, 76–95 (2016).

    Article  Google Scholar 

  154. Lissner, T. K., Reusser, D. E., Lakes, T. & Kropp, J. P. A systematic approach to assess human wellbeing demonstrated for impacts of climate change. Change Adapt. Socioecol. Syst. 1, 98–110 (2014).

  155. Creutzig, F. & Niamir, L. Demand-side solutions to climate change mitigation consistent with high levels of wellbeing. Preprint at Zenodo https://doi.org/10.5281/zenodo.5163965 (2020).

Download references

Acknowledgements

We thank our workshop participants for their contribution and feedback. L.N. and F.C., J.C.M. and M.C., and W.F.L. acknowledge funding from Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research) project number 01LG1806A, 03SFK5J0 and 01LG1910A respectively. L.M. acknowledges funding from the Robert Bosch Foundation.

Author information

Authors and Affiliations

Authors

Contributions

F.C. and L.N. designed the framework of this study and led the process and writing. The sectoral teams: Y.S., É.M. and S.M. (building); A.L., J.D. and L.N. (food); M.F., S.B.N. and F.C. (transport); M.P., X.B. and D.U.V. (urban); and J.C., S.d.l.R.d.C. and E.M. (industry). L.M., W.F.L., A.G., E.M., J.C.M., Y.M., P.P., J.R., L.S., J.S., F.C. and L.N were the internal review team. M.C. and L.N. designed and supported the systematic literature survey. S.S. and J.R. provided trade-offs between SDGs and demand/supply solutions (Fig. 2). L.N. and F.C. designed Figs. 1 and 3. All authors contributed to data collection, analysis and writing.

Corresponding author

Correspondence to Felix Creutzig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Climate Change thanks Claire Hoolohan, Mari Martiskainen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Constituents of wellbeing and their relationship to SDGs.

Extended Data Fig. 2 Confidence of assessment in demand-side options/wellbeing rating, based on the state of the literature.

Detailed data underpinning the assessment is reported in Supplementary Tables 37.

Extended Data Fig. 3 Demand-side mitigation options and wellbeing potentials mixed- and multi-methods framework.

workshop/meeting icon source: by Maxim Kulikov (CC BY 3.0) via Wikimedia Commons. Available from: https://commons.wikimedia.org/wiki/File:Noun_Project_Business_Meeting_icon_1150615.svg.

Supplementary information

Supplementary Information

Supplementary Tables 1–7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creutzig, F., Niamir, L., Bai, X. et al. Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nat. Clim. Chang. 12, 36–46 (2022). https://doi.org/10.1038/s41558-021-01219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-021-01219-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing