Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Geographic redistributions are insufficient to mitigate exposure to climate change in North American birds

Abstract

As climate change accelerates, many species must move poleward or upslope to conserve their environmental niches and limit their exposure. While such geographic redistributions have been extensively reported, an assessment of species’ success in limiting their exposure to novel conditions is missing. Here we report on a method to account for biases in tens of millions of species observations and evaluate how 406 bird species native to the United States and Canada have mitigated their environmental niche loss using geographical redistribution. We find that most redistributions have only been partially effective at mitigating exposure to climate change. Over 20 years, species, on average, have redistributed their summertime ranges by ~0.64° north, averting their expected exposure to warming by ~1.28 °C, which is roughly half the warming they would have experienced if they had remained stationary. Meanwhile, species have only mitigated ~0.47 °C (11% of expected warming) in winter, and nearly all have experienced warming of >2 °C. Species moving the farthest north and possessing traits associated with dispersal have succeeded most in limiting their niche loss. Species’ historical niches are becoming increasingly mismatched with contemporary climates, even in a highly mobile taxon, raising concerns about the ability of other wildlife to persist in a warmer world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographic redistributions and niche loss over 20 years of climate change.
Fig. 2: Twenty years of climate change exposure and niche loss across 406 US and Canadian bird species.
Fig. 3: Geographic redistributions mitigated some climate change exposure.
Fig. 4: Migratory behaviour is associated with range redistributions and niche loss.

Similar content being viewed by others

Data availability

The data used in this manuscript is available via Map of Life at https://doi.org/10.48600/gwha-6a31. The GBIF data can be downloaded from www.gbif.org. The eBird data can be downloaded from www.ebird.org. The BBS data can be downloaded from https://www.usgs.gov/data/2023-release-north-american-breeding-bird-survey-dataset-1966-2022. The environmental data can be downloaded from CHELSA (https://chelsa-climate.org/) or MODIS (https://lpdaac.usgs.gov/products/mod11a1v006/). The AVONET trait data is available at https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13898.

Code availability

Code for this manuscript is available via Github at https://github.com/jeremy-cohen/changing-seasonal-niches.

References

  1. Grinnell, J. The niche-relationships of the California Thrasher. Auk 34, 427–433 (1917).

    Article  Google Scholar 

  2. Hutchinson, G. E. The multivariate niche. Cold Spring Harb. Symp. Quant. Biol. 22, 415–421 (1957).

  3. Vandermeer, J. H. Niche theory. Annu. Rev. Ecol. Syst. 3, 107–132 (1972).

    Article  Google Scholar 

  4. Kling, M. M., Auer, S. L., Comer, P. J., Ackerly, D. D. & Hamilton, H. Multiple axes of ecological vulnerability to climate change. Glob. Change Biol. 26, 2798–2813 (2020).

    Article  Google Scholar 

  5. LeDee, O. E., Handler, S. D., Hoving, C. L., Swanston, C. W. & Zuckerberg, B. Preparing wildlife for climate change: how far have we come? J. Wildl. Manag. 85, 7–16 (2021).

    Article  Google Scholar 

  6. La Sorte, F. A., Fink, D. & Johnston, A. Time of emergence of novel climates for North American migratory bird populations. Ecography 42, 1079–1091 (2019).

    Article  Google Scholar 

  7. La Sorte, F. A., Fink, D. & Johnston, A. Seasonal associations with novel climates for North American migratory bird populations. Ecol. Lett. 21, 845–856 (2018).

    Article  PubMed  Google Scholar 

  8. Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).

    Article  Google Scholar 

  10. Rohr, J. R. et al. The complex drivers of thermal acclimation and breadth in ectotherms. Ecol. Lett. 21, 1425–1439 (2018).

    Article  PubMed  Google Scholar 

  11. Rushing, C. S., Royle, J. A., Ziolkowski, D. J. & Pardieck, K. L. Migratory behavior and winter geography drive differential range shifts of eastern birds in response to recent climate change. Proc. Natl Acad. Sci. USA 117, 12897–12903 (2020).

  12. Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Pecl, G. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, 6332 (2017).

  14. Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Brommer, J. E. The range margins of northern birds shift polewards. Ann. Zool. Fenn. 41, 391–397 (2004).

  16. Zuckerberg, B., Woods, A. M. & Porter, W. F. Poleward shifts in breeding bird distributions in New York State. Glob. Change Biol. 15, 1866–1883 (2009).

    Article  Google Scholar 

  17. Thomas, C. D. & Lennon, J. J. Birds extend their ranges northwards. Nature 399, 213–213 (1999).

    Article  CAS  Google Scholar 

  18. La Sorte, F. A. & Jetz, W. Tracking of climatic niche boundaries under recent climate change: niche tracking under recent climate change. J. Anim. Ecol. 81, 914–925 (2012).

    Article  PubMed  Google Scholar 

  19. Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Serra-Diaz, J. M. et al. Bioclimatic velocity: the pace of species exposure to climate change. Divers. Distrib. 20, 169–180 (2014).

    Article  Google Scholar 

  21. La Sorte, F. A. & Jetz, W. Avian distributions under climate change: towards improved projections. J. Exp. Biol. 213, 1395–1395 (2010).

    Article  Google Scholar 

  22. Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

    Article  Google Scholar 

  23. Elsen, P. R. et al. Accelerated shifts in terrestrial life zones under rapid climate change. Glob. Change Biol. 28, 918–935 (2022).

    Article  CAS  Google Scholar 

  24. Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Freeman, B. G. & Class Freeman, A. M. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proc. Natl Acad. Sci. USA 111, 4490–4494 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. La Sorte, F. A. & Thompson, F. R. Poleward shifts in winter ranges of North American birds. Ecology 88, 1803–1812 (2007).

    Article  PubMed  Google Scholar 

  27. Williams, J. J. & Newbold, T. Local climatic changes affect biodiversity responses to land use: a review. Divers. Distrib. 26, 76–92 (2020).

    Article  Google Scholar 

  28. Zhao, Q. et al. Land‐use change increases climatic vulnerability of migratory birds: insights from integrated population modelling. J. Anim. Ecol. 88, 1625–1637 (2019).

    Article  PubMed  Google Scholar 

  29. Lu, M. & Jetz, W. Scale-sensitivity in the measurement and interpretation of environmental niches. Trends Ecol. Evol. 38, 554–567 (2023).

  30. Kujala, H., Vepsäläinen, V., Zuckerberg, B. & Brommer, J. E. Range margin shifts of birds revisited – the role of spatiotemporally varying survey effort. Glob. Change Biol. 19, 420–430 (2013).

    Article  Google Scholar 

  31. eBird: An Online Database of Bird Distribution and Abundance (Cornell Lab of Ornithology, 2025); https://ebird.org/home

  32. Ziolkowski, D. J., Lutmerding, M., English, W. B., Aponte, V. I. & Hudson, M. A. R. North American Breeding Bird Survey dataset 1966–2022. US Geological Survey https://doi.org/10.5066/P9GS9K64 (2023).

  33. Net international migration drives highest U.S. population growth in decades. US Census Bureau www.census.gov/newsroom/press-releases/2024/population-estimates-international-migration.html (2024).

  34. Cohen, J. & Jetz, W. Diverse strategies for tracking seasonal environmental niches at hemispheric scale. Glob. Ecol. Biogeogr. 32, 1549–1560 (2023).

    Article  Google Scholar 

  35. Zuckerberg, B., Fink, D., La Sorte, F. A., Hochachka, W. M. & Kelling, S. Novel seasonal land cover associations for eastern North American forest birds identified through dynamic species distribution modelling. Divers. Distrib. 22, 717–730 (2016).

    Article  Google Scholar 

  36. Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).

    Article  Google Scholar 

  37. Lenoir, J. & Svenning, J.-C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    Article  Google Scholar 

  38. Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Rangwala, I., Sinsky, E. & Miller, J. R. Amplified warming projections for high altitude regions of the Northern Hemisphere mid-latitudes from CMIP5 models. Environ. Res. Lett. 8, 024040 (2013).

    Article  Google Scholar 

  40. Huey, R. B. & Kingsolver, J. G. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194, E140–E150 (2019).

    Article  PubMed  Google Scholar 

  41. MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Change Biol. 23, 4094–4105 (2017).

    Article  Google Scholar 

  42. Sharma, S. et al. North American tree migration paced by climate in the West, lagging in the East. Proc. Natl Acad. Sci. USA 119, e2116691118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jarzyna, M. A., Porter, W. F., Maurer, B. A., Zuckerberg, B. & Finley, A. O. Landscape fragmentation affects responses of avian communities to climate change. Glob. Change Biol. 21, 2942–2953 (2015).

    Article  Google Scholar 

  44. Parks, S. A., Holsinger, L. M., Abatzoglou, J. T., Littlefield, C. E. & Zeller, K. A. Protected areas not likely to serve as steppingstones for species undergoing climate‐induced range shifts. Glob. Change Biol. 29, 2681–2696 (2023).

  45. McCauley, L. A., Ribic, C. A., Pomara, L. Y. & Zuckerberg, B. The future demographic niche of a declining grassland bird fails to shift poleward in response to climate change. Landsc. Ecol. 32, 807–821 (2017).

    Article  Google Scholar 

  46. Ludwig, G. X. et al. Short- and long-term population dynamical consequences of asymmetric climate change in black grouse. Proc. R. Soc. B: Biol. Sci. 273, 2009–2016 (2006).

    Article  Google Scholar 

  47. Staude, I. R. et al. Specialist birds replace generalists in grassland remnants as land use change intensifies. Front. Ecol. Evol. 8, 597542 (2021).

    Article  Google Scholar 

  48. Jarzyna, M. A., Zuckerberg, B., Finley, A. O. & Porter, W. F. Synergistic effects of climate and land cover: grassland birds are more vulnerable to climate change. Landsc. Ecol. 31, 2275–2290 (2016).

    Article  Google Scholar 

  49. Dale, V. H. The relationship between land-use change and climate change. Ecol. Appl. 7, 753–769 (1997).

    Article  Google Scholar 

  50. Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).

    Article  Google Scholar 

  51. Koleček, J., Adamík, P. & Reif, J. Shifts in migration phenology under climate change: temperature vs. abundance effects in birds. Clim. Change 159, 177–194 (2020).

    Article  Google Scholar 

  52. Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Sinervo, B. et al. Climate Change and Collapsing Thermal Niches of Mexican Endemic Reptiles White Paper for the Environmental Working Group of the UC–Mexico Initiative (Univ. of California, 2017).

  54. Tourani, M. et al. Maximum temperatures determine the habitat affiliations of North American mammals. Proc. Natl Acad. Sci. USA 120, e2304411120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Qu, Y.-F. & Wiens, J. J. Higher temperatures lower rates of physiological and niche evolution. Proc. Biol. Sci. 287, 20200823 (2020).

    PubMed  PubMed Central  Google Scholar 

  56. Antão, L. H. et al. Climate change reshuffles northern species within their niches. Nat. Clim. Change 12, 587–592 (2022).

    Article  Google Scholar 

  57. Li, R. et al. A cloud-based toolbox for the versatile environmental annotation of biodiversity data. PLoS Biol. 19, e3001460 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  59. ABA Checklist: Birds of the Continental United States and Canada 7th edn (ABA, 2008).

  60. Clements, J. F. et al. The eBird/Clements checklist of birds of the world: v2019 (2019).

  61. Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article  Google Scholar 

  62. Hulley, G. C., Malakar, N. K., Islam, T. & Freepartner, R. J. NASA’s MODIS and VIIRS land surface temperature and emissivity products: a long-term and consistent Earth system data record. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 522–535 (2017).

    Article  Google Scholar 

  63. Karger, D. N., Wilson, A. M., Mahony, C. & Zimmermann, N. E. Global daily 1km land surface precipitation based on cloud cover-informed downscaling. Sci. Data 8, 307 (2021).

  64. Ooms, J. The jsonlite package: a practical and consistent mapping between JSON data and R objects. Preprint at https://arxiv.org/abs/1403.2805 (2014).

  65. Wickham, H. & Wickham, M. H. httr: tools for working with URLs and HTTP. R package version 3.5 https://cran.r-project.org/web/packages/httr/index.html (2020).

  66. McKechnie, A. E., Gerson, A. R. & Wolf, B. O. Thermoregulation in desert birds: scaling and phylogenetic variation in heat tolerance and evaporative cooling. J. Exp. Biol. 224, jeb229211 (2021).

    Article  PubMed  Google Scholar 

  67. Song, S. & Beissinger, S. R. Environmental determinants of total evaporative water loss in birds at multiple temperatures. Auk 137, ukz069 (2020).

    Article  Google Scholar 

  68. Maclean, I. M. D. et al. Climate change causes rapid changes in the distribution and site abundance of birds in winter. Glob. Change Biol. 14, 2489–2500 (2008).

    Article  Google Scholar 

  69. Leech, D. I. & Crick, H. Q. P. Influence of climate change on the abundance, distribution and phenology of woodland bird species in temperate regions. Ibis 149, 128–145 (2007).

    Article  Google Scholar 

  70. Harris, R. M. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    Article  Google Scholar 

  71. Kellermann, V. et al. Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically. Proc. Natl Acad. Sci. USA 109, 16228–16233 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hällfors, M. H. et al. Recent range shifts of moths, butterflies, and birds are driven by the breadth of their climatic niche. Evol. Lett. 8, 89–100 (2024).

    Article  PubMed  Google Scholar 

  73. Bartholomew, G. A. & Cade, T. J. The water economy of land birds. Auk 80, 504–539 (1963).

    Article  Google Scholar 

  74. Kolb, T. E. et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States. For. Ecol. Manag. 380, 321–334 (2016).

    Article  Google Scholar 

  75. Cady, S. M., O’Connell, T. J., Loss, S. R., Jaffe, N. E. & Davis, C. A. Species‐specific and temporal scale‐dependent responses of birds to drought. Glob. Change Biol. 25, 2691–2702 (2019).

    Article  Google Scholar 

  76. Illán, J. G. et al. Precipitation and winter temperature predict long‐term range‐scale abundance changes in western North American birds. Glob. Change Biol. 20, 3351–3364 (2014).

    Article  Google Scholar 

  77. Zuckerberg, B., Ribic, C. A. & McCauley, L. A. Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size. Conserv. Biol. 32, 872–882 (2018).

    Article  PubMed  Google Scholar 

  78. Santillán, V. et al. Spatio-temporal variation in bird assemblages is associated with fluctuations in temperature and precipitation along a tropical elevational gradient. PLoS ONE 13, e0196179 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lafage, D., Secondi, J., Georges, A., Bouzillé, J. & Pétillon, J. Satellite‐derived vegetation indices as surrogate of species richness and abundance of ground beetles in temperate floodplains. Insect Conserv. Divers. 7, 327–333 (2014).

    Article  Google Scholar 

  80. Kontsiotis, V. J., Chatzigiovanakis, S., Valsamidis, E., Xofis, P. & Liordos, V. Normalized difference vegetation index as a proxy of urban bird species presence and distribution at different spatial scales. Diversity 15, 1139 (2023).

    Article  Google Scholar 

  81. Selwood, K. E., McGeoch, M. A., Clarke, R. H. & Mac Nally, R. High‐productivity vegetation is important for lessening bird declines during prolonged drought. J. Appl. Ecol. 55, 641–650 (2018).

    Article  Google Scholar 

  82. Nychka, D., Furrer, R., Paige, J., Sain, S. & Nychka, M. D. fields: tools for spatial data. R package version 3.5.0 https://cran.r-project.org/web/packages/fields/index.html (2015).

  83. Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). USGS www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation (2011).

  84. Hijmans, R. J. et al. raster: geographic data analysis and modeling. R package version 3.5.0 https://cran.r-project.org/web/packages/raster/index.html (2015).

  85. Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  86. Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: estimated marginal means, aka least-squares means. R package version 4.1.0 https://cran.r-project.org/web/packages/emmeans/index.html (2019).

  87. Lu, M., Winner, K. & Jetz, W. A unifying framework for quantifying and comparing n-dimensional hypervolumes. Methods Ecol. Evol. 12, 1953–1968 (2021).

    Article  Google Scholar 

  88. Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).

    Article  Google Scholar 

  89. La Sorte, F. A. et al. The role of artificial light at night and road density in predicting the seasonal occurrence of nocturnally migrating birds. Divers. Distrib. 28, 992–1009 (2022).

  90. Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).

    Article  PubMed  Google Scholar 

  91. Cohen, J. M. & Jetz, W. Fine-grain predictions are key to accurately represent continental-scale biodiversity patterns. Global Ecol. Biogeogr. 34, e13934 (2025).

    Article  Google Scholar 

  92. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Clements, J. F. The Clements Checklist of Birds of the World 6th edn (Comstock/Cornell Laboratory of Ornithology, 2007).

  94. Ho, L. S. T. et al. phylolm: phylogenic linear regression. R package version 3.0 https://cran.r-project.org/web/packages/phylolm/index.html (2016).

  95. Symonds, M. R. & Blomberg, S. P. in Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L.) 105–130 (Springer, 2014).

  96. Greenwell, B. M. pdp: an R package for constructing partial dependence plots. R. J. 9, 421–436 (2017).

    Article  Google Scholar 

  97. Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).

    PubMed  Google Scholar 

  98. Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).

  99. Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Wilshire, K. Chefira, A. Ranipeta, R. Li and the Map of Life team at the Yale Center for Biodiversity and Global Change for implementing the Spatiotemporal Observation Annotation Tool to annotate occurrence data. We thank D. Ellis-Soto, L. Fouda, A. Honda, F. Iannarilli, F. La Sorte, R. Li, J. Makinen, J. Portmann, E. Sauer, S. Sharma, J. Wilshire, K. Winner and S. Yanco for their constructive comments on the manuscript. We thank F. La Sorte for compiling the species-level migration distances. This work was enabled by NASA grants 80NSSC17K0282 and 80NSSC18K0435 to W.J. and was partially supported by the E. O. Wilson Biodiversity Foundation in furtherance of the Half-Earth Project.

Author information

Authors and Affiliations

Authors

Contributions

Both authors devised the ideas for the study and the methodology. J.M.C. compiled and annotated the GBIF data. J.M.C. devised the trend calculation workflow. J.M.C. accessed the functional trait databases and harmonized the phylogenetic information. J.M.C. conducted the statistical analyses and generated the figures. Both authors wrote the manuscript.

Corresponding author

Correspondence to Jeremy M. Cohen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1–13.

Reporting Summary

Peer Review File

Supplementary Data 1

Estimates of realized and mitigated niche loss and geographical redistributions between 2000–2020 for all species during summer and winter.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, J.M., Jetz, W. Geographic redistributions are insufficient to mitigate exposure to climate change in North American birds. Nat Ecol Evol (2025). https://doi.org/10.1038/s41559-025-02714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-025-02714-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing