Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Barrier reinforcement for enhanced perovskite solar cell stability under reverse bias

Abstract

Stability of perovskite solar cells (PSCs) under light, heat, humidity and their combinations have been notably improved recently. However, PSCs have poor reverse-bias stability that limits their real-world application. Here we report a systematic study on the degradation mechanisms of p–i–n structure PSCs under reverse bias. The oxidation of iodide by injected holes at the cathode side initialize the reverse-bias-induced degradation, then the generated neutral iodine oxidizes metal electrode such as copper, followed by drift of Cu+ into perovskites and its reduction by injected electrons, resulting in localized metallic filaments and thus device breakdown. A reinforced barrier with combined lithium fluoride, tin oxide and indium tin oxide at the cathode side reduces device dark current and avoids the corrosion of Cu0. It dramatically increases breakdown voltage to above −20 V and improved the T90 lifetime of PSCs to ~1,000 h under –1.6 V. The modified minimodule also maintained over 90% of its initial performance after 720 h of shadow tests.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Breakdown of PSCs under reverse bias.
Fig. 2: Long-term degradation of PSCs under reverse bias.
Fig. 3: The pathways to reinforce ion migration and the charge injection barrier.
Fig. 4: The photovoltaic performance of small-area PSCs (0.08 cm2).
Fig. 5: The photovoltaic performance of large-area minimodules.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article and its supplementary information. Source data are provided with this paper.

References

  1. Green, M. A. et al. Solar cell efficiency tables (version 62). Prog. Photovoltaics Res. Appl. 31, 651–663 (2023).

    Article  Google Scholar 

  2. Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article  Google Scholar 

  3. Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).

    Article  Google Scholar 

  4. Wang, T. et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 377, 1227–1232 (2022).

    Article  Google Scholar 

  5. Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    Article  Google Scholar 

  6. Fei, C. et al. Lead-chelating hole-transport layers for efficient and stable perovskite minimodules. Science 380, 823–829 (2023).

    Article  Google Scholar 

  7. Gu, H. et al. Design optimization of bifacial perovskite minimodules for improved efficiency and stability. Nat. Energy 8, 675–684 (2023).

    Article  Google Scholar 

  8. Deng, Y. et al. Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nat. Energy 6, 633–641 (2021).

    Article  Google Scholar 

  9. Wang, Z. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618, 74–79 (2023).

    Article  Google Scholar 

  10. Shi, L. et al. Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368, eaba2412 (2020).

    Article  Google Scholar 

  11. Li, N., Niu, X., Chen, Q. & Zhou, H. Towards commercialization: the operational stability of perovskite solar cells. Chem. Soc. Rev. 49, 8235–8286 (2020).

    Article  Google Scholar 

  12. Wang, C. et al. Perovskite solar cells in the shadow: understanding the mechanism of reverse-bias behavior toward suppressed reverse-bias breakdown and reverse-bias induced degradation. Adv. Energy Mater. 13, 2203596 (2023).

    Article  Google Scholar 

  13. Lan, D. & Green, M. A. Combatting temperature and reverse-bias challenges facing perovskite solar cells. Joule 6, 1782–1797 (2022).

    Article  Google Scholar 

  14. Bogachuk, D. et al. Perovskite photovoltaic devices with carbon-based electrodes withstanding reverse-bias voltages up to –9 V and surpassing IEC 61215:2016 international standard. Sol. RRL 6, 2100527 (2022).

    Article  Google Scholar 

  15. Bertoluzzi, L. et al. Incorporating electrochemical halide oxidation into drift-diffusion models to explain performance losses in perovskite solar cells under prolonged reverse bias. Adv. Energy Mater. 11, 2002614 (2021).

    Article  Google Scholar 

  16. Ni, Z. et al. Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nat. Energy 7, 65–73 (2022).

    Article  Google Scholar 

  17. Xu, Z. et al. Reverse-bias resilience of monolithic perovskite/silicon tandem solar cells. Joule 7, 1992–2002 (2023).

    Article  Google Scholar 

  18. Wolf, E. J., Gould, I. E., Bliss, L. B., Berry, J. J. & McGehee, M. D. Designing modules to prevent reverse bias degradation in perovskite solar cells when partial shading occurs. Sol. RRL 6, 2100239 (2022).

    Article  Google Scholar 

  19. Kim, D. et al. Light- and bias-induced structural variations in metal halide perovskites. Nat. Commun. 10, 444 (2019).

    Article  Google Scholar 

  20. Jeangros, Q. et al. In situ TEM analysis of organic–inorganic metal-halide perovskite solar cells under electrical bias. Nano Lett. 16, 7013–7018 (2016).

    Article  Google Scholar 

  21. Rajagopal, A., Williams, S. T., Chueh, C.-C. & Jen, A. K. Y. Abnormal current–voltage hysteresis induced by reverse bias in organic–inorganic hybrid perovskite photovoltaics. J. Phys. Chem. Lett. 7, 995–1003 (2016).

    Article  Google Scholar 

  22. Jia, S. et al. Ion-accumulation-induced charge tunneling for high gain factor in p–i–n-structured perovskite CH3NH3PbI3 X-ray detector. Adv. Mater. Technol. 7, 2100908 (2022).

    Article  Google Scholar 

  23. Li, W. et al. Sparkling hot spots in perovskite solar cells under reverse bias. ChemPhysMater 1, 71–76 (2022).

    Article  Google Scholar 

  24. Xu, Z., Kerner, R. A., Berry, J. J. & Rand, B. P. Iodine electrochemistry dictates voltage-induced halide segregation thresholds in mixed-halide perovskite devices. Adv. Funct. Mater. 32, 2203432 (2022).

    Article  Google Scholar 

  25. Kerner, R. A., Xu, Z., Larson, B. W. & Rand, B. P. The role of halide oxidation in perovskite halide phase separation. Joule 5, 2273–2295 (2021).

    Article  Google Scholar 

  26. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    Article  MathSciNet  Google Scholar 

  27. Leijtens, T. et al. Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015).

    Article  Google Scholar 

  28. Bowring, A. R., Bertoluzzi, L., O’Regan, B. C. & McGehee, M. D. Reverse bias behavior of halide perovskite solar cells. Adv. Energy Mater. 8, 1702365 (2018).

    Article  Google Scholar 

  29. Razera, R. A. Z. et al. Instability of p–i–n perovskite solar cells under reverse bias. J. Mater. Chem. A 8, 242–250 (2020).

    Article  Google Scholar 

  30. Najafi, L. et al. Reverse-bias and temperature behaviors of perovskite solar cells at extended voltage range. ACS Appl. Energy Mater. 5, 1378–1384 (2022).

    Article  Google Scholar 

  31. Xu, Z. et al. Halogen redox shuttle explains voltage-induced halide redistribution in mixed-halide perovskite devices. ACS Energy Lett. 8, 513–520 (2023).

    Article  Google Scholar 

  32. Zhao, Z. et al. Crystal size effect on carrier transport of microscale perovskite junctions via soft contact. Nano Lett. 20, 8640–8646 (2020).

    Article  Google Scholar 

  33. Ma, Y. et al. Suppressing ion migration across perovskite grain boundaries by polymer additives. Adv. Funct. Mater. 31, 2006802 (2021).

    Article  Google Scholar 

  34. Moehl, T. et al. Strong photocurrent amplification in perovskite solar cells with a porous TiO2 blocking layer under reverse bias. J. Phys. Chem. Lett. 5, 3931–3936 (2014).

    Article  Google Scholar 

  35. Ren, X. et al. Mobile iodides capture for highly photolysis- and reverse-bias-stable perovskite solar cells. Nat. Mater. https://doi.org/10.1038/s41563-024-01876-2 (2024).

    Article  Google Scholar 

  36. Bratsch, S. G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18, 1–21 (1989).

    Article  Google Scholar 

  37. Wang, Y., Teo, H. W., Ong, K. K., Mo, Z. Q. & Zhao, S. P. Study on copper diffusion barrier materials by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). In Proc. 2016 IEEE 23rd International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) 140–143 (IEEE, 2016).

  38. Chen, S. et al. Stabilizing perovskite–substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    Article  Google Scholar 

  39. Zhao, J. et al. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9, 3650–3656 (2016).

    Article  Google Scholar 

  40. Chen, S., Xiao, X., Gu, H. & Huang, J. Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 7, eabe8130 (2021).

    Article  Google Scholar 

  41. Ni, Z. et al. High grain boundary recombination velocity in polycrystalline metal halide perovskites. Sci. Adv. 8, eabq8345 (2022).

    Article  Google Scholar 

  42. Mastroianni, S., Lembo, A., Brown, T. M., Reale, A. & Di Carlo, A. Electrochemistry in reverse biased dye solar cells and dye/electrolyte degradation mechanisms. ChemPhysChem 13, 2964–2975 (2012).

    Article  Google Scholar 

  43. Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    Article  Google Scholar 

  44. Xu, J. et al. Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article  Google Scholar 

  45. Palmstrom, A. F. et al. Interfacial effects of tin oxide atomic layer deposition in metal halide perovskite photovoltaics. Adv. Energy Mater. 8, 1800591 (2018).

    Article  Google Scholar 

  46. Xiao, K. et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762–767 (2022).

    Article  Google Scholar 

  47. Chin, X. Y. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–63 (2023).

    Article  Google Scholar 

  48. Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite–silicon tandem solar cells. Science 381, 63–69 (2023).

    Article  Google Scholar 

  49. Aydin, E. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023).

    Article  Google Scholar 

  50. Correa Baena, J. P. et al. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015).

    Article  Google Scholar 

  51. Liu, J. et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).

    Article  Google Scholar 

  52. Li, N. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408–415 (2019).

    Article  Google Scholar 

  53. Seo, J. et al. Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells. Energy Environ. Sci. 7, 2642–2646 (2014).

    Article  Google Scholar 

  54. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  Google Scholar 

  55. You, M. et al. Improving efficiency and stability in quasi-2D perovskite light-emitting diodes by a multifunctional LiF interlayer. ACS Appl. Mater. Interfaces 12, 43018–43023 (2020).

    Article  Google Scholar 

  56. Peña-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Lett. 5, 2728–2736 (2020).

    Article  Google Scholar 

  57. Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018).

    Article  Google Scholar 

  58. Menzel, D. et al. Field effect passivation in perovskite solar cells by a LiF interlayer. Adv. Energy Mater. 12, 2201109 (2022).

    Article  Google Scholar 

  59. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  60. Dai, X. et al. Pathways to high efficiency perovskite monolithic solar modules. PRX Energy 1, 013004 (2022).

    Article  Google Scholar 

  61. Chen, B. et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3, 177–190 (2019).

    Article  Google Scholar 

  62. Harvey, S. P., Messinger, J., Zhu, K., Luther, J. M. & Berry, J. J. Investigating the effects of chemical gradients on performance and reliability within perovskite solar cells with TOF-SIMS. Adv. Energy Mater. 10, 1903674 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office award number DE-EE0009520. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under contract number DE-AC36-08GO28308. The views expressed in the article do not necessarily represent the views of the DOE or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

N.L. and J.H. conceived the idea. N.L. fabricated and characterized perovskite films and devices. Z.S. performed the PL mapping and NMR measurements. C.F. and H.G. optimized the device fabrication and laser scribing process. H.J. carried out device encapsulation and performed PL mapping measurements. M.L. conducted XRD measurements. S.P.H, Y.D. and M.C.B. conducted TOF-SIMS measurements. N.L. and J.H. wrote the paper and all authors commented on the paper.

Corresponding author

Correspondence to Jinsong Huang.

Ethics declarations

Competing interests

The authors declare the following competing interests: Tandem PV has a license for the following technologies used or evaluated in this paper: an ink formulation for fast coating of perovskites and BHC for reducing iodine. J.H. is an inventor of the technologies and has or could receive royalties. These relationships have been disclosed to and are under management by UNC-Chapel Hill.

Peer review

Peer review information

Nature Energy thanks Andreas Hinsch, Anton Ievlev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Shi, Z., Fei, C. et al. Barrier reinforcement for enhanced perovskite solar cell stability under reverse bias. Nat Energy 9, 1264–1274 (2024). https://doi.org/10.1038/s41560-024-01579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-024-01579-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing