Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trait somatic anxiety is associated with reduced directed exploration and underestimation of uncertainty

Abstract

Anxiety has been related to decreased physical exploration, but past findings on the interaction between anxiety and exploration during decision making were inconclusive. Here we examined how latent factors of trait anxiety relate to different exploration strategies when facing volatility-induced uncertainty. Across two studies (total N = 985), we demonstrated that people used a hybrid of directed, random and undirected exploration strategies, which were respectively sensitive to relative uncertainty, total uncertainty and value difference. Trait somatic anxiety, that is, the propensity to experience physical symptoms of anxiety, was inversely correlated with directed exploration and undirected exploration, manifesting as a lesser likelihood for choosing the uncertain option and reducing choice stochasticity regardless of uncertainty. Somatic anxiety is also associated with underestimation of relative uncertainty. Together, these results reveal the selective role of trait somatic anxiety in modulating both uncertainty-driven and value-driven exploration strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study designs.
Fig. 2: Predictions of choice probability function change across conditions and probit regression results.
Fig. 3: Exploratory factor analysis results (N = 501).
Fig. 4: Effects of trait anxiety factors on exploration strategies.

Similar content being viewed by others

Data availability

All de-identified data are publicly available at the Open Science Framework website: https://osf.io/y6urc/.

Code availability

The code used to fit belief update model, generate regression models and generate figures are publicly available at the Open Science Framework https://osf.io/y6urc/.

References

  1. Lister, R. G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92, 180–185 (1987).

    Article  CAS  Google Scholar 

  2. Prut, L. & Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463, 3–33 (2003).

    Article  CAS  Google Scholar 

  3. Zweifel, L. S. et al. Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat. Neurosci. 14, 620–626 (2011).

    Article  CAS  Google Scholar 

  4. Britton, D. R. & Britton, K. T. A sensitive open field measure of anxiolytic drug activity. Pharmacol. Biochem. Behav. 15, 577–582 (1981).

    Article  CAS  Google Scholar 

  5. Biedermann, S. V. et al. An elevated plus-maze in mixed reality for studying human anxiety-related behavior. BMC Biol. 15, 125 (2017).

    Article  Google Scholar 

  6. Walz, N., Mühlberger, A. & Pauli, P. A human open field test reveals thigmotaxis related to agoraphobic fear. Biol. Psychiatry 80, 390–397 (2016).

    Article  Google Scholar 

  7. Schulz, E. & Gershman, S. J. The algorithmic architecture of exploration in the human brain. Curr. Opin. Neurobiol. 55, 7–14 (2019).

    Article  CAS  Google Scholar 

  8. Levinthal, D. A. From arms to trees: opportunity costs and path dependence and the exploration-exploitation tradeoff. Strategy Sci. 6, 331–337 (2021).

    Article  Google Scholar 

  9. Grupe, D. W. & Nitschke, J. B. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat. Rev. Neurosci. 14, 488–501 (2013).

    Article  CAS  Google Scholar 

  10. Charpentier, C. J., Aylward, J., Roiser, J. P. & Robinson, O. J. Enhanced risk aversion, but not loss aversion, in unmedicated pathological anxiety. Biol. Psychiatry 81, 1014–1022 (2017).

    Article  Google Scholar 

  11. Aberg, K. C., Toren, I. & Paz, R. A neural and behavioral trade-off between value and uncertainty underlies exploratory decisions in normative anxiety. Mol. Psychiatry 27, 1573–1587 (2022).

    Article  Google Scholar 

  12. Bennett, D., Sutcliffe, K., Tan, N. P. J., Smillie, L. D. & Bode, S. Anxious and obsessive-compulsive traits are independently associated with valuation of noninstrumental information. J. Exp. Psychol. Gen. 150, 739–755 (2021).

    Article  Google Scholar 

  13. Aylward, J. et al. Altered learning under uncertainty in unmedicated mood and anxiety disorders. Nat. Hum. Behav. 3, 1116–1123 (2019).

    Article  Google Scholar 

  14. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).

    Article  CAS  Google Scholar 

  15. Gershman, S. J. Deconstructing the human algorithms for exploration. Cognition 173, 34–42 (2018).

    Article  Google Scholar 

  16. Schwartenbeck, P. et al. Computational mechanisms of curiosity and goal-directed exploration. eLife 8, e41703 (2019).

    Article  Google Scholar 

  17. Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A. & Cohen, J. D. Humans use directed and random exploration to solve the explore–exploit dilemma. J. Exp. Psychol. Gen. 143, 2074–2081 (2014).

    Article  Google Scholar 

  18. Wilson, R. C., Bonawitz, E., Costa, V. D. & Ebitz, R. B. Balancing exploration and exploitation with information and randomization. Curr. Opin. Behav. Sci. 38, 49–56 (2021).

    Article  Google Scholar 

  19. Dubois, M. et al. Human complex exploration strategies are enriched by noradrenaline-modulated heuristics. eLife 10, e59907 (2021).

    Article  CAS  Google Scholar 

  20. Auer, P. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 3, 397–422 (2002).

    Google Scholar 

  21. Srinivas, N., Krause, A., Kakade, S. M. & Seeger, M. W. Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58, 3250–3265 (2012).

    Article  Google Scholar 

  22. Thompson, W. R. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25, 285–294 (1933).

    Article  Google Scholar 

  23. Gershman, S. J. Uncertainty and exploration. Decision 6, 277–286 (2019).

    Article  Google Scholar 

  24. Gershman, S. J. & Tzovaras, B. G. Dopaminergic genes are associated with both directed and random exploration. Neuropsychologia 120, 97–104 (2018).

    Article  Google Scholar 

  25. Tomov, M. S., Truong, V. Q., Hundia, R. A. & Gershman, S. J. Dissociable neural correlates of uncertainty underlie different exploration strategies. Nat. Commun. 11, 1–12 (2020).

    Article  Google Scholar 

  26. Piray, P. & Daw, N. D. A model for learning based on the joint estimation of stochasticity and volatility. Nat. Commun. 12, 1–16 (2021).

    Article  Google Scholar 

  27. Beltzer, M. L., Adams, S., Beling, P. A. & Teachman, B. A. Social anxiety and dynamic social reinforcement learning in a volatile environment. Clin. Psychol. Sci. 7, 1372–1388 (2019).

    Article  Google Scholar 

  28. Browning, M., Behrens, T. E., Jocham, G., O’Reilly, J. X. & Bishop, S. J. Anxious individuals have difficulty learning the causal statistics of aversive environments. Nat. Neurosci. 18, 590–596 (2015).

    Article  CAS  Google Scholar 

  29. Gagne, C., Zika, O., Dayan, P. & Bishop, S. J. Impaired adaptation of learning to contingency volatility in internalizing psychopathology. eLife 9, e61387 (2020).

    Article  CAS  Google Scholar 

  30. Hein, T. P., de Fockert, J. & Ruiz, M. H. State anxiety biases estimates of uncertainty and impairs reward learning in volatile environments. NeuroImage 224, 117424 (2021).

    Article  Google Scholar 

  31. Huang, H., Thompson, W. & Paulus, M. P. Computational dysfunctions in anxiety: failure to differentiate signal from noise. Biol. Psychiatry 82, 440–446 (2017).

    Article  Google Scholar 

  32. Pulcu, E. & Browning, M. Affective bias as a rational response to the statistics of rewards and punishments. eLife 6, e27879 (2017).

    Article  Google Scholar 

  33. Pulcu, E. & Browning, M. The misestimation of uncertainty in affective disorders. Trends Cogn. Sci. 23, 865–875 (2019).

    Article  Google Scholar 

  34. Buss, A. H. Two anxiety factors in psychiatric patients. J. Abnorm. Soc. Psychol. 65, 426–427 (1962).

    Article  CAS  Google Scholar 

  35. Hamilton, M. A. X. The assessment of anxiety states by rating. Br. J. Med. Psychol. 32, 50–55 (1959).

    Article  CAS  Google Scholar 

  36. Lang, P. J. The mechanics of desensitization and the laboratory study of human fear. Behavior Therapy: Appraisal and Status. New York: McGraw-Hill, 160–191 (1969).

  37. Schwartz, G. E., Davidson, R. J. & Goleman, D. J. Patterning of cognitive and somatic processes in the self-regulation of anxiety: effects of meditation versus exercise. Psychosom. Med. 40, 321–328 (1978).

    Article  CAS  Google Scholar 

  38. Wall, A. D. & Lee, E. B. What do anxiety scales really measure? An Item content analysis of self-report measures of anxiety. J. Psychopathol. Behav. Assess. https://doi.org/10.1007/s10862-022-09973-9 (2022).

  39. DeGood, D. E. & Tait, R. C. The cognitive-somatic anxiety questionnaire: psychometric and validity data. J. Psychopathol. Behav. Assess. 9, 75–87 (1987).

    Article  Google Scholar 

  40. Ree, M. J., French, D., MacLeod, C. & Locke, V. Distinguishing cognitive and somatic dimensions of state and trait anxiety: development and validation of the state-trait inventory for cognitive and somatic anxiety (STICSA). Behav. Cogn. Psychother. 36, 313–332 (2008).

    Article  Google Scholar 

  41. Wise, T. & Dolan, R. J. Associations between aversive learning processes and transdiagnostic psychiatric symptoms in a general population sample. Nat. Commun. 11, 1–13 (2020).

    Article  Google Scholar 

  42. Spielberger, C. D. Manual for the State-trait Anxiety Inventory (STAI Form Y), consuting Psychologists Palo Alto. Consulting Psychologists Press (1983)

  43. Aitchison, L., Bang, D., Bahrami, B. & Latham, P. E. Doubly Bayesian analysis of confidence in perceptual decision-making. PLoS Comput. Biol. 11, e1004519 (2015).

    Article  Google Scholar 

  44. Fleming, S. M. & Daw, N. D. Self-evaluation of decision-making: a general Bayesian framework for metacognitive computation. Psychol. Rev. 124, 91–114 (2017).

    Article  Google Scholar 

  45. Xiang, Y., Graeber, T., Enke, B. & Gershman, S. J. Confidence and central tendency in perceptual judgment. Atten. Percept. Psychophys. 83, 3024–3034 (2021).

    Article  Google Scholar 

  46. Zorowitz, S., Momennejad, I. & Daw, N. D. Anxiety, avoidance, and sequential evaluation. Comput. Psychiatr. 4, 1–17 (2020).

    Article  Google Scholar 

  47. Mkrtchian, A., Aylward, J., Dayan, P., Roiser, J. P. & Robinson, O. J. Modeling avoidance in mood and anxiety disorders using reinforcement learning. Biol. Psychiatry 82, 532–539 (2017).

    Article  Google Scholar 

  48. Smith, R. et al. Lower levels of directed exploration and reflective thinking are associated with greater anxiety and depression. Front. Psychiatry 12, 782136 (2022).

    Article  Google Scholar 

  49. Zaller, I., Zorowitz, S. & Niv, Y. Information seeking on the horizons task does not predict anxious symptomatology. Biol. Psychiatry 89, S217–S218 (2021).

    Article  Google Scholar 

  50. Meyer, T. J., Miller, M. L., Metzger, R. L. & Borkovec, T. D. Development and validation of the Penn State worry questionnaire. Behav. Res. Ther. 28, 487–495 (1990).

    Article  CAS  Google Scholar 

  51. Sharp, P. B., Miller, G. A. & Heller, W. Transdiagnostic dimensions of anxiety: neural mechanisms, executive functions, and new directions. Int. J. Psychophysiol. 98, 365–377 (2015).

    Article  Google Scholar 

  52. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, Vol. 5 (American Psychiatric Association, 2013).

  53. Kallai, J. et al. Spatial exploration behaviour in an extended labyrinth in patients with panic disorder and agoraphobia. Psychiatry Res. 149, 223–230 (2007).

    Article  Google Scholar 

  54. Gillan, C. M. et al. Experimentally induced and real-world anxiety have no demonstrable effect on goal-directed behaviour. Psychol. Med. 51, 1467–1478 (2021).

    Article  CAS  Google Scholar 

  55. Domschke, K., Stevens, S., Pfleiderer, B. & Gerlach, A. L. Interoceptive sensitivity in anxiety and anxiety disorders: an overview and integration of neurobiological findings. Clin. Psychol. Rev. 30, 1–11 (2010).

    Article  Google Scholar 

  56. Ehlers, A. Cognitive factors in panic attacks: symptom probability and sensitivity. J. Cogn. Psychother. 5, 157–173 (1991).

    Article  Google Scholar 

  57. Yoris, A. et al. The roles of interoceptive sensitivity and metacognitive interoception in panic. Behav. Brain Funct. 11, 1–6 (2015).

    Article  Google Scholar 

  58. de Berker, A. O. et al. Computations of uncertainty mediate acute stress responses in humans. Nat. Commun. 7, 1–11 (2016).

    Article  Google Scholar 

  59. FeldmanHall, O., Glimcher, P., Baker, A. L., NYU PROSPEC Collaboration & Phelps, E. A. The functional roles of the amygdala and prefrontal cortex in processing uncertainty. J. Cogn. Neurosci. 31, 1742–1754 (2019).

    Article  Google Scholar 

  60. Miu, A. C., Heilman, R. M. & Houser, D. Anxiety impairs decision-making: psychophysiological evidence from an Iowa gambling task. Biol. Psychol. 77, 353–358 (2008).

    Article  Google Scholar 

  61. Nassar, M. R. et al. Rational regulation of learning dynamics by pupil-linked arousal systems. Nat. Neurosci. 15, 1040–1046 (2012).

    Article  CAS  Google Scholar 

  62. Bacow, T. L., May, J. E., Brody, L. R. & Pincus, D. B. Are there specific metacognitive processes associated with anxiety disorders in youth? Psychol. Res. Behav. Manage. 3, 81–90 (2010).

    Article  Google Scholar 

  63. Calvo, M. G. & Miguel-Tobal, J. J. The anxiety response: concordance among components. Motiv. Emot. 22, 211–230 (1998).

    Article  Google Scholar 

  64. Hoehn-Saric, R., McLeod, D. R. & Zimmerli, W. D. Symptoms and treatment responses of generalized anxiety disorder patients with high versus low levels of cardiovascular complaints. Am. J. Psychiatry 146, 854–859 (1989).

    Article  CAS  Google Scholar 

  65. Lenow, J. K., Constantino, S. M., Daw, N. D. & Phelps, E. A. Chronic and acute stress promote overexploitation in serial decision making. J. Neurosci. 37, 5681–5689 (2017).

    Article  CAS  Google Scholar 

  66. Nestadt, G. et al. Obsessive–compulsive disorder: subclassification based on co-morbidity. Psychol. Med. 39, 1491–1501 (2009).

    Article  CAS  Google Scholar 

  67. Dorfman, H. M., Bhui, R., Hughes, B. L. & Gershman, S. J. Causal inference about good and bad outcomes. Psychol. Sci. 30, 516–525 (2019).

    Article  Google Scholar 

  68. Speekenbrink, M. & Konstantinidis, E. Uncertainty and exploration in a restless bandit problem. Top. Cogn. Sci. 7, 351–367 (2015).

    Article  Google Scholar 

  69. Knowles, K. A. & Olatunji, B. O. Specificity of trait anxiety in anxiety and depression: meta-analysis of the state-trait anxiety inventory. Clin. Psychol. Rev. 82, 101928 (2020).

    Article  Google Scholar 

  70. Roberts, K. E., Hart, T. A. & Eastwood, J. D. Factor structure and validity of the State-Trait Inventory for Cognitive and Somatic Anxiety. Psychol. Assess. 28, 134–146 (2016).

    Article  Google Scholar 

  71. Horn, J. L. A rationale and test for the number of factors in factor analysis. Psychometrika 30, 179–185 (1965).

    Article  CAS  Google Scholar 

  72. Bartlett, M. S. The statistical conception of mental factors. Br. J. Psychol. 28, 97–104 (1937).

    Google Scholar 

  73. Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research. R package version 2.2.3 (Northwestern University, 2022); https://CRAN.R-project.org/package=psych

Download references

Acknowledgements

We thank T. Rusch for help with data analysis, and members of the Phelps Lab and Gershman Lab for helpful discussions. This work was supported by the National Institute on Drug Abuse (Grant No. R01 DA042855 to E.A.P.). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.F., S.J.G. and E.A.P. developed the study concept and designed the study. H.F. collected data and performed data analysis. H.F. interpreted the data under the supervision of S.J.G. and E.A.P. All authors wrote the manuscript and approved its final version for submission.

Corresponding author

Correspondence to Elizabeth A. Phelps.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Christoph Korn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Tables 1–11, Figs. 1–14 and References.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Gershman, S.J. & Phelps, E.A. Trait somatic anxiety is associated with reduced directed exploration and underestimation of uncertainty. Nat Hum Behav 7, 102–113 (2023). https://doi.org/10.1038/s41562-022-01455-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-022-01455-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing