Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-dimensional neural geometry underpins hierarchical organization of sequence in human working memory

Abstract

Working memory (WM) is constructive in nature. Instead of passively retaining information, WM reorganizes complex sequences into hierarchically embedded chunks to overcome capacity limits and facilitate flexible behaviour. Here, to investigate the neural mechanisms underlying hierarchical reorganization in WM, we performed two electroencephalography and one magnetoencephalography experiments, wherein humans retain in WM a temporal sequence of items, that is, syllables, which are organized into chunks, that is, multisyllabic words. We demonstrate that the one-dimensional sequence is represented by two-dimensional neural representational geometry in WM arising from left prefrontal and temporoparietal regions, with separate dimensions encoding item position within a chunk and chunk position in the sequence. Critically, this two-dimensional geometry is observed consistently in different experimental settings, even during tasks not encouraging hierarchical reorganization in WM and correlates with WM behaviour. Overall, these findings strongly support that complex sequences are reorganized into factorized multidimensional neural representational geometry in WM, which also speaks to general structure-based organizational principles given WM’s involvement in many cognitive functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representational geometry models of syllable sequences in WM.
Fig. 2: Experiment 1. All results here are based on EEG recordings from N = 32 subjects.
Fig. 3: Experiment 2. All results here are based on EEG recordings from N = 32 subjects.
Fig. 4: Experiment 3. All results here are based on MEG recordings from N = 30 subjects.

Similar content being viewed by others

Data availability

Data supporting main findings of the study are available at https://osf.io/drzuy/#.

Code availability

The code illustrating key analyses of the study can be found here https://osf.io/drzuy/#.

References

  1. Schacter, D. L., Norman, K. A. & Koutstaal, W. The cognitive neuroscience of constructive memory. Annu. Rev. Psychol. 49, 289–318 (1998).

    CAS  PubMed  Google Scholar 

  2. Brady, T. F. & Alvarez, G. A. Hierarchical encoding in visual working memory: ensemble statistics bias memory for individual items. Psychol. Sci. 22, 384–392 (2011).

    PubMed  Google Scholar 

  3. Prabhakaran, V., Narayanan, K., Zhao, Z. & Gabrieli, J. D. E. Integration of diverse information in working memory within the frontal lobe. Nat. Neurosci. 3, 85–90 (2000).

    CAS  PubMed  Google Scholar 

  4. van Ede, F. & Nobre, A. C. Turning attention inside out: how working memory serves behavior. Annu. Rev. Psychol. 74, 137–165 (2023).

    PubMed  Google Scholar 

  5. Kwak, Y. & Curtis, C. E. Unveiling the abstract format of mnemonic representations. Neuron 110, 1822–1828 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee, S.-H., Kravitz, D. J. & Baker, C. I. Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nat. Neurosci. 16, 997–999 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ehrlich, D. B. & Murray, J. D. Geometry of neural computation unifies working memory and planning. Proc. Natl Acad. Sci. USA 119, e2115610119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gelastopoulos, A., Whittington, M. A. & Kopell, N. J. Parietal low beta rhythm provides a dynamical substrate for a working memory buffer. Proc. Natl Acad. Sci. USA 116, 16613–16620 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Caucheteux, C., Gramfort, A. & King, J.-R. Evidence of a predictive coding hierarchy in the human brain listening to speech. Nat. Hum. Behav. 7, 430–441 (2023).

    PubMed  PubMed Central  Google Scholar 

  10. de Saussure, F. Course in General Linguistics (Columbia Univ. Press, 2011).

  11. Georgopoulos, A. P. Higher order motor control. Annu. Rev. Neurosci. 14, 361–377 (1991).

    CAS  PubMed  Google Scholar 

  12. Sarafyazd, M. & Jazayeri, M. Hierarchical reasoning by neural circuits in the frontal cortex. Science 364, eaav8911 (2019).

    CAS  PubMed  Google Scholar 

  13. Balaguer, J., Spiers, H., Hassabis, D. & Summerfield, C. Neural mechanisms of hierarchical planning in a virtual subway network. Neuron 90, 893–903 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Koechlin, E. & Jubault, T. Broca’s area and the hierarchical organization of human behavior. Neuron 50, 963–974 (2006).

    CAS  PubMed  Google Scholar 

  15. Thalmann, M., Souza, A. S. & Oberauer, K. How does chunking help working memory? J. Exp. Psychol. Learn. Mem. Cogn. 45, 37–55 (2019).

    PubMed  Google Scholar 

  16. Farrell, S. Temporal clustering and sequencing in short-term memory and episodic memory. Psychol. Rev. 119, 223–271 (2012).

  17. Brady, T. F., Konkle, T. & Alvarez, G. A. A review of visual memory capacity: beyond individual items and toward structured representations. J. Vis. 11, 4 (2011).

  18. Geddes, C. E., Li, H. & Jin, X. Optogenetic editing reveals the hierarchical organization of learned action sequences. Cell 174, 32–43.e15 (2018).

  19. Tomov, M. S., Yagati, S., Kumar, A., Yang, W. & Gershman, S. J. Discovery of hierarchical representations for efficient planning. PLoS Comput. Biol. 16, e1007594 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, S., Élteto, N., Dasgupta, I. & Schulz, E. Learning structure from the ground up—hierarchical representation learning by chunking. Adv. Neural Inf. Process. Syst. 35, 36706–36721 (2022).

    Google Scholar 

  21. Ng, H. L. H. & Maybery, M. T. Grouping in short-term verbal memory: is position coded temporally? Q. J. Exp. Psychol. A 55, 391–424 (2002).

  22. Ryan, J. Grouping and short-term memory: different means and patterns of grouping. Q. J. Exp. Psychol. 21, 137–147 (1969).

    CAS  PubMed  Google Scholar 

  23. Ryan, J. Temporal grouping, rehearsal and short-term memory. Q. J. Exp. Psychol. 21, 148–155 (1969).

    CAS  PubMed  Google Scholar 

  24. Brown, G. D. A., Preece, T. & Hulme, C. Oscillator-based memory for serial order. Psychol. Rev. 107, 127–181 (2000).

  25. Hartley, T., Hurlstone, M. J. & Hitch, G. J. Effects of rhythm on memory for spoken sequences: a model and tests of its stimulus-driven mechanism. Cogn. Psychol. 87, 135–178 (2016).

    PubMed  Google Scholar 

  26. Henson, R. N. A. Short-term memory for serial order: the start-end model. Cogn. Psychol. 36, 73–137 (1998).

    CAS  PubMed  Google Scholar 

  27. Lee, C. L. & Estes, W. K. Item and order information in short-term memory: evidence for multilevel perturbation processes. J. Exp. Psychol. Hum. Learn. Mem. 7, 149–169 (1981).

  28. Hurlstone, M. J. Functional similarities and differences between the coding of positional information in verbal and spatial short-term order memory. Memory 27, 147–162 (2019).

    PubMed  Google Scholar 

  29. Behrens, T. E. J. et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).

    CAS  PubMed  Google Scholar 

  30. Whittington, J. C. R. et al. The Tolman-Eichenbaum machine: unifying space and relational memory through generalization in the hippocampal formation. Cell 183, 1249–1263.e23 (2020).

  31. Hitch, G. J. Temporal grouping effects in immediate recall: a working memory analysis. Q. J. Exp. Psychol. A 49, 116–139 (1996).

  32. Burgess, N. & Hitch, G. J. A revised model of short-term memory and long-term learning of verbal sequences. J. Mem. Lang. 55, 627–652 (2006).

    Google Scholar 

  33. Liu, Y., Dolan, R. J., Kurth-Nelson, Z. & Behrens, T. E. J. Human replay spontaneously reorganizes experience. Cell 178, 640–652.e14 (2019).

  34. Kornysheva, K. et al. Neural competitive queuing of ordinal structure underlies skilled sequential action. Neuron 101, 1166–1180 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Guidali, G., Pisoni, A., Bolognini, N. & Papagno, C. Keeping order in the brain: the supramarginal gyrus and serial order in short-term memory. Cortex 119, 89–99 (2019).

    PubMed  Google Scholar 

  36. Zhou, J. et al. Evolving schema representations in orbitofrontal ensembles during learning. Nature 590, 606–611 (2021).

    CAS  PubMed  Google Scholar 

  37. Xie, Y. et al. Geometry of sequence working memory in macaque prefrontal cortex. Science 375, 632–639 (2022).

    CAS  PubMed  Google Scholar 

  38. Fan, Y., Han, Q., Guo, S. & Luo, H. Distinct neural representations of content and ordinal structure in auditory sequence memory. J. Neurosci. 41, 6290–6303 (2021).

    CAS  PubMed  Google Scholar 

  39. Fan, Y. & Luo, H. Reactivating ordinal position information from auditory sequence memory in human brains. Cereb. Cortex 33, 5924–5936 (2023).

    PubMed  Google Scholar 

  40. Gwilliams, L., King, J.-R., Marantz, A. & Poeppel, D. Neural dynamics of phoneme sequences reveal position-invariant code for content and order. Nat. Commun. 13, 6606 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Goldstein, A. et al. Shared computational principles for language processing in humans and deep language models. Nat. Neurosci. 25, 369–380 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Panichello, M. F. & Buschman, T. J. Shared mechanisms underlie the control of working memory and attention. Nature 592, 601–605 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Libby, A. & Buschman, T. J. Rotational dynamics reduce interference between sensory and memory representations. Nat. Neurosci. 24, 715–726 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weber, J. et al. Subspace partitioning in the human prefrontal cortex resolves cognitive interference. Proc. Natl Acad. Sci. USA 120, e2220523120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Navon, D. Forest before trees: the precedence of global features in visual perception. Cogn. Psychol. 9, 353–383 (1977).

    Google Scholar 

  46. Sanders, L. D. & Poeppel, D. Local and global auditory processing: behavioral and ERP evidence. Neuropsychologia 45, 1172–1186 (2007).

    PubMed  Google Scholar 

  47. Fitch, W. T. & Martins, M. D. Hierarchical processing in music, language, and action: Lashley revisited. Ann. N. Y. Acad. Sci. 1316, 87–104 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Khanna, A. R. et al. Single-neuronal elements of speech production in humans. Nature 626, 603–610 (2024).

  50. Ding, N., Melloni, L., Zhang, H., Tian, X. & Poeppel, D. Cortical tracking of hierarchical linguistic structures in connected speech. Nat. Neurosci. 19, 158–164 (2016).

    CAS  PubMed  Google Scholar 

  51. Henin, S. et al. Learning hierarchical sequence representations across human cortex and hippocampus. Sci. Adv. 7, eabc4530 (2021).

    PubMed  PubMed Central  Google Scholar 

  52. Badre, D. Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes. Trends Cogn. Sci. 12, 193–200 (2008).

    PubMed  Google Scholar 

  53. Planton, S. et al. A theory of memory for binary sequences: evidence for a mental compression algorithm in humans. PLoS Comput. Biol. 17, e1008598 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. D’Esposito, M. & Postle, B. R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66, 115–142 (2015).

    PubMed  Google Scholar 

  55. Frankish, C. Modality-specific grouping effects in short-term memory. J. Mem. Lang. 24, 200–209 (1985).

    Google Scholar 

  56. Frankish, C. Perceptual organization and precategorical acoustic storage. J. Exp. Psychol. Learn. Mem. Cogn. 15, 469–479 (1989).

  57. Henson, R. N. A. Positional information in short-term memory: relative or absolute? Mem. Cogn. 27, 915–927 (1999).

    CAS  Google Scholar 

  58. Yokoi, A. & Diedrichsen, J. Neural organization of hierarchical motor sequence representations in the human neocortex. Neuron 103, 1178–1190 (2019).

    CAS  PubMed  Google Scholar 

  59. Kikumoto, A. & Mayr, U. Decoding hierarchical control of sequential behavior in oscillatory EEG activity. eLife 7, e38550 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Flesch, T., Juechems, K., Dumbalska, T., Saxe, A. & Summerfield, C. Orthogonal representations for robust context-dependent task performance in brains and neural networks. Neuron 110, 1258–1270 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Riggall, A. C. & Postle, B. R. The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. J. Neurosci. 32, 12990–12998 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ólafsdóttir, H. F., Bush, D. & Barry, C. The role of hippocampal replay in memory and planning. Curr. Biol. 28, R37–R50 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Grosmark, A. D., Sparks, F. T., Davis, M. J. & Losonczy, A. Reactivation predicts the consolidation of unbiased long-term cognitive maps. Nat. Neurosci. 24, 1574–1585 (2021).

    CAS  PubMed  Google Scholar 

  64. Liu, Y., Nour, M. M., Schuck, N. W., Behrens, T. E. J. & Dolan, R. J. Decoding cognition from spontaneous neural activity. Nat. Rev. Neurosci. 23, 204–214 (2022).

    PubMed  Google Scholar 

  65. Son, J.-Y., Vives, M.-L., Bhandari, A. & FeldmanHall, O. Replay shapes abstract cognitive maps for efficient social navigation. Nat. Hum. Behav. https://doi.org/10.1038/s41562-024-01990-w (2024).

  66. Nassar, M. R., Helmers, J. C. & Frank, M. J. Chunking as a rational strategy for lossy data compression in visual working memory. Psychol. Rev. 125, 486–511 (2018).

  67. Graybiel, A. M. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136 (1998).

    CAS  PubMed  Google Scholar 

  68. Servan-Schreiber, E. & Anderson, J. R. Learning artificial grammars with competitive chunking. J. Exp. Psychol. Learn. Mem. Cogn. 16, 592–608 (1990).

  69. Norris, D. & Kalm, K. Chunking and data compression in verbal short-term memory. Cognition 208, 104534 (2021).

    PubMed  Google Scholar 

  70. Chase, W. G. & Simon, H. A. Perception in chess. Cogn. Psychol. 4, 55–81 (1973).

    Google Scholar 

  71. Miller, G. A. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956).

  72. Heusser, A. C., Poeppel, D., Ezzyat, Y. & Davachi, L. Episodic sequence memory is supported by a theta–gamma phase code. Nat. Neurosci. 19, 1374–1380 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Oberauer, K. Removing irrelevant information from working memory: a cognitive aging study with the modified Sternberg task. J. Exp. Psychol. Learn. Mem. Cogn. 27, 948–957 (2001).

  74. Oberauer, K. Access to information in working memory: exploring the focus of attention. J. Exp. Psychol. Learn. Mem. Cogn. 28, 411–421 (2002).

  75. Stokes, M. G. ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn. Sci. 19, 394–405 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. Kandemir, G. & Akyürek, E. G. Impulse perturbation reveals cross-modal access to sensory working memory through learned associations. NeuroImage 274, 120156 (2023).

    PubMed  Google Scholar 

  77. Wolff, M. J., Jochim, J., Akyürek, E. G. & Stokes, M. G. Dynamic hidden states underlying working-memory-guided behavior. Nat. Neurosci. 20, 864–871 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sreenivasan, K. K., Curtis, C. E. & D’Esposito, M. Revisiting the role of persistent neural activity during working memory. Trends Cogn. Sci. 18, 82–89 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Lundqvist, M., Herman, P. & Miller, E. K. Working memory: delay activity, yes! Persistent activity? Maybe not. J. Neurosci. 38, 7013–7019 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nelli, S., Braun, L., Dumbalska, T., Saxe, A. & Summerfield, C. Neural knowledge assembly in humans and neural networks. Neuron 111, 1504–1516 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Howard, M. W. & Kahana, M. J. A distributed representation of temporal context. J. Math. Psychol. 46, 269–299 (2002).

    Google Scholar 

  82. Polyn, S. M. & Kahana, M. J. Memory search and the neural representation of context. Trends Cogn. Sci. 12, 24–30 (2008).

    PubMed  Google Scholar 

  83. Averbeck, B. B., Chafee, M. V., Crowe, D. A. & Georgopoulos, A. P. Parallel processing of serial movements in prefrontal cortex. Proc. Natl Acad. Sci. USA 99, 13172–13177 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Watanabe, K. & Funahashi, S. Prefrontal delay-period activity reflects the decision process of a saccade direction during a free-choice ODR task. Cereb. Cortex 17, i88–i100 (2007).

    PubMed  Google Scholar 

  85. Van Ede, F., Chekroud, S. R., Stokes, M. G. & Nobre, A. C. Concurrent visual and motor selection during visual working memory guided action. Nat. Neurosci. 22, 477–483 (2019).

    PubMed Central  Google Scholar 

  86. Kleiner, M., Brainard, D. & Pelli, D. What’s new in Psychtoolbox-3? Perception 36, 1–16 (2007).

  87. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

    Google Scholar 

  88. Gramfort, A. et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7, 267 (2013).

    PubMed  PubMed Central  Google Scholar 

  89. Grootswagers, T., Wardle, S. G. & Carlson, T. A. Decoding dynamic brain patterns from evoked responses: a tutorial on multivariate pattern analysis applied to time series neuroimaging data. J. Cogn. Neurosci. 29, 677–697 (2017).

    PubMed  Google Scholar 

  90. Wolff, M. J., Kandemir, G., Stokes, M. G. & Akyürek, E. G. Unimodal and bimodal access to sensory working memories by auditory and visual impulses. J. Neurosci. 40, 671–681 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods 164, 177–190 (2007).

    PubMed  Google Scholar 

  92. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Innovation 2030 Major Project 2021ZD0204100 (2021ZD0204103 to H.L. and 2021ZD0204105 to N.D.), the National Natural Science Foundation of China (31930052 to H.L.), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (T2421004 to F.F.), the China Postdoctoral Science Foundation (2023M740124 to Y.F.), the National Natural Science Foundation of China (32222035 to N.D.), the National Science and Technology Innovation 2030 Major Project (2022ZD0204802 to F.F.) and the National Natural Science Foundation of China (31930053 to F.F.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper. We thank the National Center for Protein Sciences and Center for MRI Research at Peking University in Beijing, China, for assistance with data acquisition. We would like to thank D. Liu, Q. Han and J. Gao for their help during the data collection, and M. Luo and J. Li for helpful support on data analysis.

Author information

Authors and Affiliations

Contributions

Y.F. and H.L. originally conceived and designed the experiments. Y.F. performed the experiments. Y.F. and M.W. analysed the data. F.F. and N.D. contributed to the experimental materials. Y.F., F.F., N.D. and H.L. wrote the paper.

Corresponding authors

Correspondence to Nai Ding or Huan Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Atsushi Kikumoto, Freek van Ede and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wang, M., Fang, F. et al. Two-dimensional neural geometry underpins hierarchical organization of sequence in human working memory. Nat Hum Behav 9, 360–375 (2025). https://doi.org/10.1038/s41562-024-02047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-024-02047-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing