Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

How growing up without siblings affects the adult brain and behaviour in the CHIMGEN cohort

Abstract

With the worldwide increase in only-child families, it is crucial to understand the effects of growing up without siblings (GWS) on the adult brain, behaviour and the underlying pathways. Using the CHIMGEN cohort, we investigated the associations of GWS with adult brain structure, function, connectivity, cognition, personality and mental health, as well as the pathway from GWS to GWS-related growth environments to brain and to behaviour development, in 2,397 pairs of individuals with and without siblings well matched in covariates. We found associations linking GWS to higher language fibre integrity, lower motor fibre integrity, larger cerebellar volume, smaller cerebral volume and lower frontotemporal spontaneous brain activity. Contrary to the stereotypical impression of associations between GWS and problem behaviours, we found positive correlations of GWS with neurocognition and mental health. Despite direct effects, GWS affects most brain and behavioural outcomes through modifiable environments, such as socioeconomic status, maternal care and family support, suggesting targets for interventions to enhance children’s healthy growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brain imaging and behavioural differences between participants with and without siblings.
Fig. 2: Intergroup differences in growth environments and PEE factor scores between participants with and without siblings.
Fig. 3: Mediation and moderation of PEE factors and IDPs related to GWS effects.
Fig. 4: SEM shows the relationships between GWS, PEEs, IDPs and behavioural phenotypes.
Fig. 5: Consistent causal pathways identified by both CMA and SEM.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are divided into two categories: published data and restricted data. The voxel-wise neuroimaging statistical maps are available at https://figshare.com/articles/dataset/Voxelwise_difference/24716832 (ref. 87). The individual-level data are not openly available because access to these data must be approved by the Human Genetic Resources Administration, Ministry of Science and Technology of the People’s Republic of China. Individual-level data from samples are stored and kept in a server physically located in mainland China. They are available from the corresponding authors upon request and with permission from the Human Genetic Resources Administration, Ministry of Science and Technology of the People’s Republic of China.

Code availability

We made use of publicly available software and tools. The publicly available tools used in our analyses are described in Methods. The core codes are available at https://github.com/tj806345670/GWoS/tree/main.

References

  1. Hesketh, T., Zhou, X. & Wang, Y. The end of the one-child policy: lasting implications for China. J. Am. Med. Assoc. 314, 2619–2620 (2015).

    Article  CAS  Google Scholar 

  2. Wang, Y. & Fong, V. L. Little emperors and the 4:2:1 generation: China’s singletons. J. Am. Acad. Child Adolesc. Psychiatry 48, 1137–1139 (2009).

    Article  PubMed  Google Scholar 

  3. Hesketh, T., Lu, L. & Xing, Z. W. The effect of China’s one-child family policy after 25 years. N. Engl. J. Med. 353, 1171–1176 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Hvistendahl, M. China. Making a selfish generation by fiat. Science 339, 131 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Cameron, L., Erkal, N., Gangadharan, L. & Meng, X. Little emperors: behavioral impacts of China’s one-child policy. Science 339, 953–957 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Cheng, S., Jia, C. & Wang, Y. Only children were associated with anxiety and depressive symptoms among college students in China. Int. J. Environ. Res. Public Health 17, 4035 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Poston, D. L. & Falbo, A. T. Academic performance and personality traits of Chinese children: “onlies” versus others. Am. J. Sociol. 96, 433–451 (1990).

    Article  Google Scholar 

  8. Fuligni, A. J. & Zhang, W. Attitudes toward family obligation among adolescents in contemporary urban and rural China. Child Dev. 75, 180–192 (2004).

    Article  PubMed  Google Scholar 

  9. Wang, W., Zhang, J., Hennessy, D. A. & Yin, W. Do only-children communicate better than non-only children? A study of medical students in China. J. Comp. Fam. Stud. 51, 84–109 (2020).

    Article  Google Scholar 

  10. Guo, Y., Zhang, J. & Zhang, N.Character strengths and their influencing factors among nursing students in Changsha, China: the only-child versus non-only-child. Arch. Psychiatr. Nurs. 29, 365–371 (2015).

    Article  PubMed  Google Scholar 

  11. Liu, R. X., Lin, W. & Chen, Z.-y.School performance, peer association, psychological and behavioral adjustments: a comparison between Chinese adolescents with and without siblings. J. Adolesc. 33, 411–417 (2010).

    Article  PubMed  Google Scholar 

  12. Chen, Z.-y. & Liu, R. X. Comparing adolescent only children with those who have siblings on academic related outcomes and psychosocial adjustment. Child Dev. Res. 2014, 1–10 (2014).

    Article  Google Scholar 

  13. Jia, C. et al. Differences in school performance between only children and non-only children: evidence from China. Front. Psychol. 12, 608704 (2021).

    Article  PubMed  Google Scholar 

  14. Liu, N., Chen, Y., Yang, X. & Hu, Y. Do demographic characteristics make differences? Demographic characteristics as moderators in the associations between only child status and cognitive/non-cognitive outcomes in China. Front. Psychol. 8, 423 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cao, Y. et al. The role of only-child status in the psychological impact of COVID-19 on mental health of Chinese adolescents. J. Affect. Disord. 282, 316–321 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Falbo, T. Only children: an updated review. J. Individ. Psychol. 68, 38–49 (2012).

    Google Scholar 

  17. Zhao, X., Ma, X., Yao, Y., Wan, C. & Ng, E. China’s little emperors show signs of success. Science 339, 905–906 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Falbo, T. & Hooper, S. Y. China’s only children and psychopathology: a quantitative synthesis. Am. J. Orthopsychiatry 85, 259–274 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu, C., Munakata, T. & Onuoha, F. N. Mental health condition of the only-child: a study of urban and rural high school students in China. Adolescence 40, 831–845 (2005).

    PubMed  Google Scholar 

  20. Tomasi, D. & Volkow, N. D. Associations of family income with cognition and brain structure in USA children: prevention implications. Mol. Psychiatry 26, 6619–6629 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang, J. et al. Only-child and non-only-child exhibit differences in creativity and agreeableness: evidence from behavioral and anatomical structural studies. Brain Imaging Behav. 11, 493–502 (2017).

    Article  PubMed  Google Scholar 

  22. Xu, Q. et al. CHIMGEN: a Chinese imaging genetics cohort to enhance cross-ethnic and cross-geographic brain research. Mol. Psychiatry 25, 517–529 (2020).

    Article  PubMed  Google Scholar 

  23. Van Buuren, S. & Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).

    Google Scholar 

  24. Fortin, J. P. et al. Harmonization of multi-site diffusion tensor imaging data. NeuroImage 161, 149–170 (2017).

    Article  PubMed  Google Scholar 

  25. Yeh, F. C. Population-based tract-to-region connectome of the human brain and its hierarchical topology. Nat. Commun. 13, 4933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Panesar, S. S., Belo, J. T. A., Yeh, F. C. & Fernandez-Miranda, J. C. Structure, asymmetry, and connectivity of the human temporo-parietal aslant and vertical occipital fasciculi. Brain Struct. Funct. 224, 907–923 (2019).

    Article  PubMed  Google Scholar 

  27. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Bethlehem, R. A. I. et al. Brain charts for the human lifespan. Nature 604, 525–533 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paus, T., Keshavan, M. & Giedd, J. N. Why do many psychiatric disorders emerge during adolescence?. Nat. Rev. Neurosci. 9, 947–957 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sowell, E. R. et al. Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 24, 8223–8231 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gogolla, N., Caroni, P., Luthi, A. & Herry, C. Perineuronal nets protect fear memories from erasure. Science 325, 1258–1261 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Zuo, Y., Lin, A., Chang, P. & Gan, W. B. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46, 181–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Shi, R. et al. Investigating grey matter volumetric trajectories through the lifespan at the individual level. Nat. Commun. 15, 5954 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaiser, C. et al. Population-wide cerebellar growth models of children and adolescents. Nat. Commun. 15, 2351 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu, J. et al. Global urbanicity is associated with brain and behaviour in young people. Nat. Hum. Behav. 6, 279–293 (2022).

    Article  PubMed  Google Scholar 

  36. Dufford, A. J. et al. Prospective associations, longitudinal patterns of childhood socioeconomic status, and white matter organization in adulthood. Hum. Brain Mapp. 41, 3580–3593 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhao, D., He, Z., Tian, Y. & Liu, H. Differences in cognitive and non-cognitive results between only-child and non-only-child children: analysis of popensity scores based on large-scale assessment. Children 9, 807 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Reiss, D. et al. Parenting in the context of the child: genetic and social processes. Monogr. Soc. Res. Child Dev. 87, 7–188 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. He, Z. H., Li, M. D., Ma, X. Y. & Liu, C. J. Family socioeconomic status and social media addiction in female college students: the mediating role of impulsiveness and inhibitory control. J. Genet. Psychol. 182, 60–74 (2021).

    Article  PubMed  Google Scholar 

  40. Downey, D. B.Number of siblings and intellectual development: the resource dilution explanation. Am. Psychol. 56, 497–504 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Negrini, L. Handbook of attachment, third edition: theory, research, and clinical applications, Jude Cassidy and Phillip R. Shaver (eds.), New York: Guilford Press, 2016, 1,068 pp., ISBN 978-1-4625-2529-4. Infant Ment. Health J. 39, 618–620 (2018).

  42. Noble, K. G. & Giebler, M. A.The neuroscience of socioeconomic inequality. Curr. Opin. Behav. Sci. 36, 23–28 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Giakoumaki, S. G. et al. Sub-optimal parenting is associated with schizotypic and anxiety personality traits in adulthood. Eur. Psychiatry 28, 254–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Yousafzai, A. K., Rasheed, M. A., Rizvi, A., Armstrong, R. & Bhutta, Z. A. Effect of integrated responsive stimulation and nutrition interventions in the Lady Health Worker programme in Pakistan on child development, growth, and health outcomes: a cluster-randomised factorial effectiveness trial. Lancet 384, 1282–1293 (2014).

    Article  PubMed  Google Scholar 

  45. Hackman, D. A. et al. Association of local variation in neighborhood disadvantage in metropolitan areas with youth neurocognition and brain structure. JAMA Pediatr. 175, e210426 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gong, W., Rolls, E. T., Du, J., Feng, J. & Cheng, W.Brain structure is linked to the association between family environment and behavioral problems in children in the ABCD study. Nat. Commun. 12, 3769 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jansen, A. G., Mous, S. E., White, T., Posthuma, D. & Polderman, T. J. What twin studies tell us about the heritability of brain development, morphology, and function: a review. Neuropsychol. Rev. 25, 27–46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Agler, R. & De Boeck, P. On the interpretation and use of mediation: multiple perspectives on mediation analysis. Front. Psychol. 8, 1984 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rajapakse, J. C., Giedd, J. N. & Rapoport, J. L. Statistical approach to segmentation of single-channel cerebral MR images. IEEE Trans. Med. Imaging 16, 176–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007).

    Article  PubMed  Google Scholar 

  51. Smith, S. M. et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31, 1487–1505 (2006).

    Article  PubMed  Google Scholar 

  52. Chao-Gan, Y. & Yu-Feng, Z. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4, 13 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).

    Article  PubMed  Google Scholar 

  54. Pruim, R. H. R. et al. ICA-AROMA: a robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage 112, 267–277 (2015).

    Article  PubMed  Google Scholar 

  55. Delis, D. C., Freeland, J., Kramer, J. H. & Kaplan, E. Integrating clinical assessment with cognitive neuroscience: construct validation of the California Verbal Learning Test. J. Consult. Clin. Psychol. 56, 123–130 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Owen, A. M., McMillan, K. M., Laird, A. R. & Bullmore, E.N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25, 46–59 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shin, M. S., Park, S. Y., Park, S. R., Seol, S. H. & Kwon, J. S. Clinical and empirical applications of the Rey–Osterrieth Complex Figure Test. Nat. Protoc. 1, 892–899 (2006).

    Article  PubMed  Google Scholar 

  58. Xin, Y. MCCB Chinese Norm Manual (Chinese Edition) (Peking Univ. Medical Press, 2014).

  59. Kaufman, J. N., Ross, T. J., Stein, E. A. & Garavan, H. Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J. Neurosci. 23, 7839–7843 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pulos, S., Elison, J. & Lennon, R. J. The hierarchical structure of the Interpersonal Reactivity Index. Soc. Behav. Pers. 32, 355–359 (2004).

    Article  Google Scholar 

  61. Canevello, A. & Crocker, J. Creating good relationships: responsiveness, relationship quality, and interpersonal goals. J. Pers. Soc. Psychol. 99, 78–106 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wang, X., Wang, Y. & Xin, T. The psychometric properties of the Chinese version of the Beck Depression Inventory-II with middle school teachers. Front. Psychol. 11, 548965 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shek, D. T. The Chinese version of the State-Trait Anxiety Inventory: its relationship to different measures of psychological well-being. J. Clin. Psychol. 49, 349–358 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. Watson, D., Clark, L. A. & Tellegen, A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54, 1063–1070 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. Cohen, S., Kamarck, T. & Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 24, 385–396 (1983).

    Article  CAS  PubMed  Google Scholar 

  66. Pavot, W. & Diener, E.The satisfaction with life scale and the emerging construct of life satisfaction. J. Posit. Psychol. 3, 137–152 (2008).

    Article  Google Scholar 

  67. Costa, P. T., Jr & McCrae, R. R. in The SAGE Handbook of Personality Theory and Assessment: Personality Measurement and Testing Vol. 2 179–198 (Sage Publications, 2008).

  68. Cloninger, C. R., Przybeck, T. R. & Svrakic, D. M. The tridimensional personality questionnaire: U.S. normative data. Psychol. Rep. 69, 1047–1057 (1991).

    Article  CAS  PubMed  Google Scholar 

  69. Patton, J. H., Stanford, M. S. & Barratt, E. S. Factor structure of the Barratt impulsiveness scale. J. Clin. Psychol. 51, 768–774 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Rolfe, V. Tailoring a measurement model of socioeconomic status: applying the alignment optimization method to 15 years of PISA. Int. J. Educ. Res. 106, 101723 (2021).

    Article  Google Scholar 

  71. Van Donkelaar, A. et al. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 50, 3762–3772 (2016).

    Article  PubMed  Google Scholar 

  72. Geddes, J. A., Martin, R. V., Boys, B. L. & van Donkelaar, A. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ. Health Perspect. 124, 281–289 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Parker, G., Tupling, H. & Brown, L. B. A parental bonding instrument. Br. J. Med. Psychol. 52, 1–10 (1979).

    Article  Google Scholar 

  74. Canty-Mitchell, J. & Zimet, G. D. Psychometric properties of the Multidimensional Scale of Perceived Social Support in urban adolescents. Am. J. Commun. Psychol. 28, 391–400 (2000).

    Article  CAS  Google Scholar 

  75. Zhao, X. F. et al. Reliability and validity of the Chinese version of childhood trauma questionnaire. Chinese J. Clin. Rehab. 9, 105–107 (2005).

    CAS  Google Scholar 

  76. Liu, N. et al. Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes. Nat. Genet. 55, 1126–1137 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Royston, P. Multiple imputation of missing values. Stata J. 4, 227–241 (2004).

    Article  Google Scholar 

  78. Stuart, E. A., King, G., Imai, K. & Ho, D. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).

    Google Scholar 

  79. Sparapani, R., Spanbauer, C. & McCulloch, R.Nonparametric machine learning and efficient computation with Bayesian additive regression trees: the BART R package. J. Stat. Softw. 97, 1–66 (2021).

    Article  Google Scholar 

  80. Austin, P. C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 28, 3083–3107 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Franklin, J. M., Rassen, J. A., Ackermann, D., Bartels, D. B. & Schneeweiss, S.Metrics for covariate balance in cohort studies of causal effects. Stat. Med. 33, 1685–1699 (2014).

    Article  PubMed  Google Scholar 

  82. Worsley, K. J., Taylor, J. E., Tomaiuolo, F. & Lerch, J. Unified univariate and multivariate random field theory. NeuroImage 23, S189–S195 (2004).

    Article  PubMed  Google Scholar 

  83. Velicer, W. F. Determining the number of components from the matrix of partial correlations. Psychometrika 41, 321–327 (1976).

    Article  Google Scholar 

  84. Revelle, W. & Rocklin, T.Very simple structure: an alternative procedure for estimating the optimal number of interpretable factors. Multivar. Behav. Res. 14, 403–414 (1979).

    Article  CAS  Google Scholar 

  85. Rosseel, Y.lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article  Google Scholar 

  86. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K.mediation: R package for causal mediation analysis. J. Stat. Softw. 59, 1–38 (2014).

    Article  Google Scholar 

  87. Tang, G. Voxelwise difference. figshare https://doi.org/10.6084/m9.figshare.24716832.v (2023).

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (grant numbers 82430063 and 82030053 to C.Y., 82202093 to J.T., 82472052 to W.Q., 82371924 to J.X. and 82402218 to N.L.), Tianjin Key Medical Discipline (Specialty) Construction Project (grant number TJYXZDXK-001A to C.Y.), Tianjin Natural Science Foundation (grant number 19JCYBJC25100 to W.Q.), Tianjin Young Talents in Science and Technology (grant number QN20230336 to J.X.) and China Postdoctoral Science Foundation (grant number 2023M742623 to N.L.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

C. Yu., J.T., Jing Zhang., Z.G., W. Li., W.Q. and M.W. designed the study. C. Yu., J.-H.G., Jiayuan Xu., Z.G., J.T. and W. Li. were the principal investigators. C. Yu., J.T., J.-H.G., Z.G. and Jing Zhang. wrote the paper. All authors critically reviewed the paper. J.T., J.-H.G., B.Z., Wenzhen Zhu., S.Q., G.C., Yunjun Y., W. Li., Hui Zhang., B.G., X.X., Y.Y., T.H., Z. Yan., Q.Z., F.L., M.L., S.W., Q.X., Jiayuan Xu., J.F., Y.J., N.L., P.Z., D.S., C.W., S.L., Z. Ye., F.C., W.S., M.W., D.W., Jiayuan Xu., Xiaochu Zhang., K. Xu., X.-N.Z., Long Jiang Zhang and Z. Yao. acquired the data. C. Yu., J.-H.G. and Z.G. supervised this work.

Corresponding authors

Correspondence to Zuojun Geng, Jia-Hong Gao or Chunshui Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Toni Falbo, Charles Nelson, Jingxin Nie, Jing Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Brain clusters with significant differences in GMV or ReHo between OC and non-OC in voxel-wise neuroimaging analyses
Extended Data Table 2 PEE factor differences between OC and non-OC
Extended Data Table 3 The associations of GWoS with IDPs and behaviors after controlling for 5 PEE factors and 17 covariates using multiple regression analyses

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Tables 1, 6, 8, 11 and 15–17.

Reporting Summary

Peer Review File

Supplementary Tables 2–5, 7, 9, 10 and 12–14

Supplementary Tables 2–5, 7, 9, 10 and 12–14.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhang, J., Li, W. et al. How growing up without siblings affects the adult brain and behaviour in the CHIMGEN cohort. Nat Hum Behav 9, 1005–1022 (2025). https://doi.org/10.1038/s41562-025-02142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-025-02142-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing