Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polygenic overlap between subjective well-being and psychiatric disorders and cross-ancestry validation

Abstract

Subjective well-being (SWB) is important for understanding human behaviour and health. Although the connection between SWB and psychiatric disorders has been studied, common genetic mechanisms remain unclear. This study aimed to explore the genetic relationship between SWB and psychiatric disorders. Bivariate causal mixture modelling (MiXeR), polygenic risk score (PRS) and Mendelian randomization (MR) analyses showed substantial polygenic overlap and associations between SWB and the psychiatric disorders. Subsequent replication studies in East Asian populations confirmed the polygenic overlap between schizophrenia and SWB. The conditional and conjunctional false discovery rate analyses identified additional or shared genetic loci associated with SWB or psychiatric disorders. Functional annotation revealed enrichment of specific brain tissues and genes associated with SWB. The identified genetic loci showed cross-ancestry transferability between the European and Korean populations. Our findings provide valuable insights into the common genetic mechanisms underlying SWB and psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polygenic overlap between subjective well-being and psychiatric disorders.
Fig. 2: Polygenic risk score for psychiatric disorders associated with subjective well-being.
Fig. 3: Significant variants of condFDR for psychiatric disorders and subjective well-being.
Fig. 4: Effect sizes for significant condFDR variants of subjective well-being on psychiatric disorders in Korean and European ancestry populations.

Similar content being viewed by others

Data availability

Data from 23andMe Inc. and UKB can be obtained by applying to each respective website (23andMe Inc., https://research.23andme.com/dataset-access/; UKB, https://www.ukbiobank.ac.uk). Summary statistics from ref. 4 are publicly accessible on the Social Science Genetic Association Consortium website (https://www.thessgac.org). Summary statistics for genetic correlation analysis are available from various sources, including the Psychiatric Genomics Consortium (https://www.med.unc.edu/pgc/download-results), GWAS ATLAS (https://atlas.ctglab.nl/traitDB) and GWAS Catalogue (https://www.ebi.ac.uk/gwas/studies). Full summary statistics of the KBA GWAS can be found in the NHGRI-EBI GWAS Catalogue (https://www.ebi.ac.uk/gwas/downloads).

Code availability

In this study, existing pipelines were utilized to obtain the results, and no new code was created. Further information regarding the software and data utilization can be found in Supplementary Information, including the URLs. The protocol and specific details of our MR analyses were not registered in advance.

References

  1. Diener, E., Oishi, S. & Tay, L. Advances in subjective well-being research. Nat. Hum. Behav. 2, 253–260 (2018).

    Article  PubMed  Google Scholar 

  2. Depression and Physical Illness (Cambridge Univ. Press, 2006).

  3. Vukasović, T. & Bratko, D. Heritability of personality: a meta-analysis of behavior genetic studies. Psychol. Bull. 141, 769–785 (2015).

    Article  PubMed  Google Scholar 

  4. Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624–633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kim, S. et al. Shared genetic architectures of subjective well-being in East Asian and European ancestry populations. Nat. Hum. Behav. 6, 1014–1026 (2022).

    Article  PubMed  Google Scholar 

  6. Andreassen, O. A. et al. New insights from the last decade of research in psychiatric genetics: discoveries, challenges and clinical implications. World Psychiatry 22, 4–24 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baselmans, B. M. L. et al. Multivariate genome-wide analyses of the well-being spectrum. Nat. Genet. 51, 445–451 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Røysamb, E. & Nes, R. B. The role of genetics in subjective well-being. Nat. Hum. Behav. 3, 3 (2019).

    Article  PubMed  Google Scholar 

  9. Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 10, 2417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hindley, G. et al. Charting the landscape of genetic overlap between mental disorders and related traits beyond genetic correlation. Am. J. Psychiatry 179, 833–843 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Andreassen, O. A. et al. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet. 9, e1003455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343–352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 53, 817–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Watson, H. J. et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat. Genet. 51, 1207–1214 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Johnson, E. C. et al. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry 7, 1032–1045 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Evangelista, J. E. et al. Enrichr-KG: bridging enrichment analysis across multiple libraries. Nucleic Acids Res. 51, W168–w179 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klopfenstein, D. V. et al. GOATOOLS: a Python library for Gene Ontology analyses. Sci. Rep. 8, 10872 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spencer, T. J. et al. Impact of tic disorders on ADHD outcome across the life cycle: findings from a large group of adults with and without ADHD. Am. J. Psychiatry 158, 611–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Lowe, T. L., Capriottim, M. R. & McBurnett, K. Long-term follow-up of patients with Tourette’s syndrome. Mov. Disord. Clin. Pract. 6, 40–45 (2019).

    Article  PubMed  Google Scholar 

  24. Coleman, J. R. I. et al. The genetics of the mood disorder spectrum: genome-wide association analyses of more than 185,000 cases and 439,000 controls. Biol. Psychiatry 88, 169–184 (2022).

    Article  Google Scholar 

  25. Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Jansen, P. R. et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 51, 394–403 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Dashti, H. S. et al. Genetic determinants of daytime napping and effects on cardiometabolic health. Nat. Commun. 12, 900 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mei, L. et al. Overlapping common genetic architecture between major depressive disorders and anxiety and stress-related disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 113, 110450 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Wen, X. et al. Unbalanced amygdala communication in major depressive disorder. J. Affect. Disord. 329, 192–206 (2023).

    Article  PubMed  Google Scholar 

  30. Wang, C. et al. Quantitative EEG abnormalities in major depressive disorder with basal ganglia stroke with lesions in different hemispheres. J. Affect. Disord. 215, 172–178 (2017).

    Article  PubMed  Google Scholar 

  31. Zhang, X. et al. Severity related neuroanatomical and spontaneous functional activity alteration in adolescents with major depressive disorder. Front. Psychiatry 14, 1157587 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, X. et al. Disrupted functional connectivity of the cerebellum with default mode and frontoparietal networks in young adults with major depressive disorder. Psychiatry Res. 324, 115192 (2023).

    Article  PubMed  Google Scholar 

  33. Sankar, A. et al. Altered frontal cortex functioning in emotion regulation and hopelessness in bipolar disorder. Bipolar Disord. 23, 152–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Jones, H. J. et al. Associations between plasma fatty acid concentrations and schizophrenia: a two-sample Mendelian randomisation study. Lancet Psychiatry 8, 1062–1070 (2021).

    Article  PubMed  Google Scholar 

  35. Bloch, M. H. & Qawasmi, A. Omega-3 fatty acid supplementation for the treatment of children with attention-deficit/hyperactivity disorder symptomatology: systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 50, 991–1000 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vezini, A., Balosso, S. & Ravizza, T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol. 15, 459–472 (2019).

    Article  Google Scholar 

  37. Yuan, N. Y. et al. Arachidonic acid cascade and eicosanoid production are elevated while LTC4 synthase modulates the lipidomics profile in the brain of the HIVgp120-transgenic mouse model of neuroHIV. Cells 11, 2123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bradberry, M. M. et al. N-glycoproteomics of brain synapses and synaptic vesicles. Cell Rep. 42, 112368 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Horowitz, A. M. et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science 369, 167–173 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Waszkiewicz, N. et al. Salivary exoglycosidases as markers of alcohol dependence. Alcohol Alcohol. 49, 409–416 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Dalenberg, J. R. et al. Short-term consumption of sucralose with, but not without, carbohydrate impairs neural and metabolic sensitivity to sugar in humans. Cell Metab. 31, 493–502.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Belsky, D. W. et al. Genetics and the geography of health, behaviour and attainment. Nat. Hum. Behav. 3, 576–586 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, Y. & Han, B. G. Cohort profile: the Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 46, 1350 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, J.-H. The reliability and validity test of Psychosocial Well-being Index (PWI). J. Korean Acad. Nurs. 29, 304–313 (1999).

    Article  Google Scholar 

  46. Goldberg, D. P. et al. The validity of two versions of the GHQ in the WHO study of mental illness in general health care. Psychol. Med. 27, 191–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Bartels, M. & Boomsma, D. I. Born to be happy? The etiology of subjective well-being. Behav. Genet. 39, 605–615 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Fat, L. N. et al. Evaluating and establishing national norms for mental wellbeing using the short Warwick–Edinburgh Mental Well-being Scale (SWEMWBS): findings from the Health Survey for England. Qual. Life Res. 26, 1129–1144 (2017).

    Article  Google Scholar 

  49. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guerreiro, R. et al. Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson’s and Alzheimer’s diseases. Neurobiol. Aging 38, 214.e7–214.e10 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 46, 1985–1998 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bowden, J. et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 40, 304–314 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Verbanck, M. et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nazarzadeh, M. et al. Plasma lipids and risk of aortic valve stenosis: a Mendelian randomization study. Eur. Heart J. 41, 3913–3920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brion, M. J., Shakhbazov, K. & Visscher, P. M. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 42, 1497–1501 (2013).

    Article  PubMed  Google Scholar 

  57. Sanderson, E., Spiller, W. & Bowden, J. Testing and correcting for weak and pleiotropic instruments in two-sample multivariable Mendelian randomization. Stat. Med. 40, 5434–5452 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 7, e34408 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Watanabe, K. et al. Author correction: genetic mapping of cell type specificity for complex traits. Nat. Commun. 11, 1718 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  Google Scholar 

  62. Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Shim, I. et al. Clinical utility of polygenic scores for cardiometabolic disease in Arabs. Nat. Commun. 14, 6535 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hao, L. et al. Development of a clinical polygenic risk score assay and reporting workflow. Nat. Med. 28, 1006–1013 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shim, H. et al. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS ONE 10, e0120758 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was conducted using bioresources from the National Biobank of Korea at the Korea Disease Control and Prevention Agency, South Korea (KBN-2021-031). This study was supported by grants from the National Research Foundation of Korea funded by the Ministry of Science and Information and Communication Technologies, South Korea (Grant Nos. NRF-2021R1A2C4001779 and RS-2024-00335261 to W.M. and NRF-2022R1A2C2009998 to H.-H.W.); the NAVER Digital Bio Innovation Research Fund, funded by NAVER Corporation (Grant No. 37-2023-0140); and by an MD-PhD/Medical Scientist Training Program grant from the Korea Health Industry Development Institute (KHIDI), which is funded by the Ministry of Health and Welfare, Republic of Korea (Grant No. HC20C0005).

Author information

Authors and Affiliations

Authors

Contributions

W.M. and H.-H.W. had full access to all data in the study and took responsibility for the integrity of the data and the accuracy of the data analysis. J.Y.J., W.M. and H.-H.W. conceived and designed the study. J.Y.J., Y.A. and J.-W.P. performed the statistical analyses. J.Y.J., Y.A., J.-W.P. and S.L. drafted the manuscript. K.S.O., O.A.A., W.M. and H.-H.W. supervised the study and critically revised the manuscript. All authors including K.J., S.K., S.-H.J., H.K., B.K., M.Y.H., Y.J.K., W.-Y.P. and A.O. contributed to the data interpretation, writing of the manuscript, and reading and approval of the final draft for submission.

Corresponding authors

Correspondence to Woojae Myung or Hong-Hee Won.

Ethics declarations

Competing interests

W.-Y.P. is employed by the commercial company GENINUS. O.A.A. is a consultant for HealthLytix and cortecs.ai; he has received speaker’s honoraria from Janssen, Sunovion, and Lundbeck. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Shitao Rao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–29.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J.Y., Ahn, Y., Park, JW. et al. Polygenic overlap between subjective well-being and psychiatric disorders and cross-ancestry validation. Nat Hum Behav 9, 1272–1282 (2025). https://doi.org/10.1038/s41562-025-02155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-025-02155-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing