Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PIGEON: a statistical framework for estimating gene–environment interaction for polygenic traits

Abstract

Understanding gene–environment interaction (GxE) is crucial for deciphering the genetic architecture of human complex traits. However, current statistical methods for GxE inference face challenges in both scalability and interpretability. Here we introduce PIGEON—a unified statistical framework for quantifying polygenic GxE using a variance component analytical approach. Based on this framework, we outline the main objectives in GxE studies and introduce an estimation procedure that requires only summary statistics data as input. We demonstrate the effectiveness of PIGEON through theoretical and empirical analyses, including a quasi-experimental gene-by-education study of health outcomes and gene-by-sex interaction for 530 traits using UK Biobank. We also identify genetic interactors that explain the treatment effect heterogeneity in a clinical trial on smoking cessation. PIGEON suggests a path towards polygenic, summary statistics-based inference in future GxE studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PIGEON workflow.
Fig. 2: Comparison of PIGEON and PGSxE analysis.
Fig. 3: Simulation results.
Fig. 4: A catalogue of polygenic GxSex in UKB.
Fig. 5: Heterogeneous treatment effect of bronchodilator on FEV1 across PGS groups.
Fig. 6: Impact of rGE on polygenic GxE inference.

Similar content being viewed by others

Data availability

This study made use of publicly available datasets. This research has been conducted using the UK Biobank Resource under application number 42148. Data from the UK Biobank are available by application to all bona fide researchers in the public interest at https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access. Data from the Lung Health studies are available by application at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000291.v2.p1. The SNPxE summary statistics used in the Article are available at http://qlu-lab.org/data.html.

Code availability

PIGEON software package is publicly available via GitHub at https://github.com/qlu-lab/PIGEON.

References

  1. Barcellos, S. H., Carvalho, L. S. & Turley, P. Education can reduce health differences related to genetic risk of obesity. Proc. Natl Acad. Sci. USA 115, E9765–E9772 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schmitz, L. L. & Conley, D. The effect of Vietnam-era conscription and genetic potential for educational attainment on schooling outcomes. Econ. Educ. Rev. 61, 85–97 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li, J., Li, X., Zhang, S. & Snyder, M. Gene–environment interaction in the era of precision medicine. Cell 177, 38–44 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mega, J. L. et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA 304, 1821–1830 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Riaz, N. et al. Recurrent SERPINB3 and SERPINB4 mutations in patients who respond to anti-CTLA4 immunotherapy. Nat. Genet. 48, 1327–1329 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miao, J., Wu, Y. & Lu, Q. Statistical methods for gene–environment interaction analysis. Wiley Interdisc. Rev. Comput. Stat. 16, e1635 (2024).

    Article  Google Scholar 

  7. Freeman, G. Statistical methods for the analysis of genotype–environment interactions. Heredity 31, 339–354 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Dick, D. M. et al. Candidate gene–environment interaction research: reflections and recommendations. Perspect. Psychol. Sci. 10, 37–59 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thomas, D. Gene–environment-wide association studies: emerging approaches. Nat. Rev. Genet. 11, 259–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aschard, H. et al. Challenges and opportunities in genome-wide environmental interaction (GWEI) studies. Hum. Genet. 131, 1591–1613 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miao, J. et al. A quantile integral linear model to quantify genetic effects on phenotypic variability. Proc. Natl Acad. Sci. USA 119, e2212959119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marderstein, A. R. et al. Leveraging phenotypic variability to identify genetic interactions in human phenotypes. Am. J. Hum. Genet. 108, 49–67 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Young, A. I., Wauthier, F. L. & Donnelly, P. Identifying loci affecting trait variability and detecting interactions in genome-wide association studies. Nat. Genet. 50, 1608–1614 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, H. et al. Genotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK Biobank. Sci. Adv. 5, eaaw3538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dai, J. Y., Kooperberg, C., Leblanc, M. & Prentice, R. L. Two-stage testing procedures with independent filtering for genome-wide gene–environment interaction. Biometrika 99, 929–944 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, S. H. et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 44, 247–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. & Wray, N. R. Genetic correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet. 20, 567–581 (2019).

    Article  PubMed  Google Scholar 

  24. Miao, J. et al. Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics. Nat. Commun. 14, 832 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Torkamani, A., Wineinger, N. E. & Topol, E. J. The personal and clinical utility of polygenic risk scores. Nat. Rev. Genet. 19, 581–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Martin, J. et al. Examining sex-differentiated genetic effects across neuropsychiatric and behavioral traits. Biol. Psychiatry 89, 1127–1137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bernabeu, E. et al. Sex differences in genetic architecture in the UK Biobank. Nat. Genet. 53, 1283–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Dahl, A. et al. A robust method uncovers significant context-specific heritability in diverse complex traits. Am. J. Hum. Genet. 106, 71–91 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Robinson, M. R. et al. Genotype–covariate interaction effects and the heritability of adult body mass index. Nat. Genet. 49, 1174–1181 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Ni, G. et al. Genotype–covariate correlation and interaction disentangled by a whole-genome multivariate reaction norm model. Nat. Commun. 10, 2239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shin, J. & Lee, S. H. GxEsum: a novel approach to estimate the phenotypic variance explained by genome-wide GxE interaction based on GWAS summary statistics for biobank-scale data. Genome Biol. 22, 183 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Blokland, G. A. M. et al. Sex-dependent shared and nonshared genetic architecture across mood and psychotic disorders. Biol. Psychiatry 91, 102–117 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Domingue, B. W., Trejo, S., Armstrong-Carter, E. & Tucker-Drob, E. M. Interactions between polygenic scores and environments: methodological and conceptual challenges. Sociol. Sci. 7, 465–486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Biroli, P. et al. The economics and econometrics of gene-environment interplay. Preprint at https://arxiv.org/abs/2203.00729 (2022).

  35. Schmitz, L. L. et al. The socioeconomic gradient in epigenetic ageing clocks: evidence from the multi-ethnic study of atherosclerosis and the health and retirement study. Epigenetics 17, 589–611 (2022).

    Article  PubMed  Google Scholar 

  36. Schmitz, L. L., Goodwin, J., Miao, J., Lu, Q. & Conley, D. The impact of late-career job loss and genetic risk on body mass index: evidence from variance polygenic scores. Sci. Rep. 11, 7647 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson, R., Sotoudeh, R. & Conley, D. Polygenic scores for plasticity: a new tool for studying gene–environment interplay. Demography 59, 1045–1070 (2022).

    Article  PubMed  Google Scholar 

  38. Qi, Q. et al. Sugar-sweetened beverages and genetic risk of obesity. N. Engl. J. Med. 367, 1387–1396 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer, 1998).

    Google Scholar 

  40. Tahmasbi, R., Evans, L. M., Turkheimer, E. & Keller, M. C. Testing the moderation of quantitative gene by environment interactions in unrelated individuals. Preprint at bioRxiv https://doi.org/10.1101/191080 (2017).

  41. Lu, Q. et al. A powerful approach to estimating annotation-stratified genetic covariance via GWAS summary statistics. Am. J. Hum. Genet. 101, 939–964 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kerin, M. & Marchini, J. Inferring gene-by-environment interactions with a Bayesian whole-genome regression model. Am. J. Hum. Genet. 107, 698–713 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, C. et al. Amplification is the primary mode of gene-by-sex interaction in complex human traits. Cell Genom. 3, 100297 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dudbridge, F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 9, e1003348 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ding, Y. et al. Large uncertainty in individual polygenic risk score estimation impacts PRS-based risk stratification. Nat. Genet. 54, 30–39 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Becker, J. et al. Resource profile and user guide of the Polygenic Index Repository. Nat. Hum. Behav. 5, 1744–1758 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Karczewski, K. J. et al. Pan-UK Biobank GWAS improves discovery, analysis of genetic architecture, and resolution into ancestry-enriched effects. Preprint at medRxiv https://doi.org/10.1101/2024.03.13.24303864 (2024).

  49. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Okbay, A. et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nat. Genet. 54, 437–449 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, M. et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51, 237–244 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mulasi, U., Kuchnia, A. J., Cole, A. J. & Earthman, C. P. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr. Clin. Pract. 30, 180–193 (2015).

    Article  PubMed  Google Scholar 

  55. Bulik, C. M. et al. Prevalence, heritability, and prospective risk factors for anorexia nervosa. Arch. Gen. Psychiatry 63, 305–312 (2006).

    Article  PubMed  Google Scholar 

  56. Hübel, C. et al. Genomics of body fat percentage may contribute to sex bias in anorexia nervosa. Am. J. Med. Genet. Part B 180, 428–438 (2019).

    Article  PubMed  Google Scholar 

  57. Connett, J. E. et al. Design of the Lung Health Study: a randomized clinical trial of early intervention for chronic obstructive pulmonary disease. Control. Clin. Trials 14, 3–19 (1993).

    Article  Google Scholar 

  58. Anthonisen, N. R. et al. Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1: the Lung Health Study. JAMA 272, 1497–1505 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Kong, A. et al. The nature of nurture: effects of parental genotypes. Science 359, 424–428 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Abdellaoui, A., Dolan, C. V., Verweij, K. J. & Nivard, M. G. Gene–environment correlations across geographic regions affect genome-wide association studies. Nat. Genet. 54, 1345–1354 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sunde, H. F. et al. Genetic similarity between relatives provides evidence on the presence and history of assortative mating. Nat. Commun. 15, 2641 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Y. et al. SUPERGNOVA: local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits. Genome Biol. 22, 262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim, W. et al. Interaction of cigarette smoking and polygenic risk score on reduced lung function. JAMA Netw. Open 4, e2139525 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ye, Y. et al. Interactions between enhanced polygenic risk scores and lifestyle for cardiovascular disease, diabetes, and lipid levels. Circ. Genom. Precis. Med. 14, e003128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mullins, N. et al. Polygenic interactions with environmental adversity in the aetiology of major depressive disorder. Psychol. Med. 46, 759–770 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Tyrrell, J. et al. Gene–obesogenic environment interactions in the UK Biobank study. Int. J. Epidemiol. 46, 559–575 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Dudbridge, F. & Fletcher, O. Gene–environment dependence creates spurious gene–environment interaction. Am. J. Hum. Genet. 95, 301–307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Briley, D. A. et al. Interpreting behavior genetic models: seven developmental processes to understand. Behav. Genet. 49, 196–210 (2019).

    Article  PubMed  Google Scholar 

  70. Fletcher, J. M. & Conley, D. The challenge of causal inference in gene–environment interaction research: leveraging research designs from the social sciences. Am. J. Public Health 103, S42–S45 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pasaniuc, B. & Price, A. L. Dissecting the genetics of complex traits using summary association statistics. Nat. Rev. Genet. 18, 117–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Loos, R. J. F. 15 years of genome-wide association studies and no signs of slowing down. Nat. Commun. 11, 5900 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gauderman, W. J. et al. Update on the state of the science for analytical methods for gene-environment interactions. Am. J. Epidemiol. 186, 762–770 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Speed, D. & Balding, D. J. SumHer better estimates the SNP heritability of complex traits from summary statistics. Nat. Genet. 51, 277–284 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Song, S., Jiang, W., Zhang, Y., Hou, L. & Zhao, H. Leveraging LD eigenvalue regression to improve the estimation of SNP heritability and confounding inflation. Am. J. Hum. Genet. 109, 802–811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ning, Z., Pawitan, Y. & Shen, X. High-definition likelihood inference of genetic correlations across human complex traits. Nat. Genet. 52, 859–864 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, e48376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Howe, L. J. et al. Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nat. Genet. 54, 581–592 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Daetwyler, H. D., Villanueva, B. & Woolliams, J. A. Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS ONE 3, e3395 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wray, N. R. et al. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  83. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Choi, S. W. & O’Reilly, P. F. PRSice-2: polygenic risk score software for biobank-scale data. Gigascience 8, giz082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, s13742-015-0047-8 (2015).

  87. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tashkin, D. P. et al. Comparison of the variability of the annual rates of change in FEV1 determined from serial measurements of the pre-versus post-bronchodilator FEV1 over 5 years in mild to moderate COPD: results of the lung health study. Respir. Res. 13, 70 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Abraham, G., Qiu, Y. & Inouye, M. FlashPCA2: principal component analysis of Biobank-scale genotype datasets. Bioinformatics 33, 2776–2778 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Keller, M. C. Gene × environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solution. Biol. Psychiatry 75, 18–24 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge research support from National Institutes of Health (NIH) grant U01 HG012039, the National Institute on Aging (NIA) (R00 AG056599) and the University of Wisconsin-Madison Office of the Chancellor and the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation (WARF). We also acknowledge use of the facilities of the Center for Demography of Health and Aging at the University of Wisconsin-Madison, funded by NIA Center Grant P30 AG017266. We thank members of the Social Genomics Working Group at University of Wisconsin for helpful comments. This research has been conducted using the UK Biobank Resource under application 42148.

Author information

Authors and Affiliations

Authors

Contributions

J.M. and Q.L. conceived and designed the study. J.M. developed the statistical framework, performed the simulations and data analysis, and implemented the software. G.S. assisted in GxSex analysis in UK Biobank. Yixuan Wu assisted in implementing the software. J.H. assisted in developing the statistical framework. Yuchang Wu assisted in UKB data preparation. S.B. assisted in Lung Health Study data preparation. J.S.A., K.S., L.L.S. and J.M.F. advised on result interpretation. Q.L. advised on statistical and genetic issues. J.M. and Q.L. wrote the paper. All authors contributed to paper editing and approved the paper.

Corresponding author

Correspondence to Qiongshi Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Daniel Benjamin, Christopher Rayner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note and Figs. 1–10.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, J., Song, G., Wu, Y. et al. PIGEON: a statistical framework for estimating gene–environment interaction for polygenic traits. Nat Hum Behav (2025). https://doi.org/10.1038/s41562-025-02202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-025-02202-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing