Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent manipulation of photochemical spin-triplet formation in quantum dot–molecule hybrids

Abstract

The interconversion between singlet and triplet spin states of photogenerated radical pairs is a genuine quantum process, which can be harnessed to coherently manipulate the recombination products through a magnetic field. This control is central to such diverse fields as molecular optoelectronics, quantum sensing, quantum biology and spin chemistry, but its effect is typically fairly weak in pure molecular systems. Here we introduce hybrid radical pairs constructed from semiconductor quantum dots and organic molecules. The large g-factor difference enables us to directly observe the radical-pair spin quantum beats usually hidden in previous studies, which are further accelerated by the strong exchange coupling of radical pairs enabled by the quantum confinement of quantum dots. The rapid quantum beats enable the efficient and coherent control of charge recombination dynamics at room temperature, with the modulation level of the yield of spin-triplet products reaching 400%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Materials and principles.
Fig. 2: Observation of strong MFE on transient dynamics and triplet yields.
Fig. 3: Prediction and observation of spin quantum beats of RPs.
Fig. 4: Tunable MFE through QD size and composition.
Fig. 5: Magnetic field control over steady-state photochemical isomerization reaction.

Similar content being viewed by others

Data availability

All data are available in the Article or its Supplementary Information, and are available from the corresponding author upon request. They are also available via figshare at https://doi.org/10.6084/m9.figshare.27262569. Source data are provided with this paper.

Code availability

The codes developed for this study are available from the corresponding author upon request.

References

  1. Rao, A. et al. The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500, 435–439 (2013).

    PubMed  Google Scholar 

  2. Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photon. 6, 253–258 (2012).

    Google Scholar 

  3. Kuehne, A. J. C. & Gather, M. C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem. Rev. 116, 12823–12864 (2016).

    CAS  PubMed  Google Scholar 

  4. Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    CAS  PubMed  Google Scholar 

  5. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    CAS  PubMed  Google Scholar 

  6. Luo, X. et al. Mechanisms of triplet energy transfer across the inorganic nanocrystal/organic molecule interface. Nat. Commun. 11, 28 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hou, Y. et al. Charge separation, charge recombination, long-lived charge transfer state formation and intersystem crossing in organic electron donor/acceptor dyads. J. Mater. Chem. C 7, 12048–12074 (2019).

    CAS  Google Scholar 

  8. Harvey, S. M. & Wasielewski, M. R. Photogenerated spin-correlated radical pairs: from photosynthetic energy transduction to quantum information science. J. Am. Chem. Soc. 143, 15508–15529 (2021).

    CAS  PubMed  Google Scholar 

  9. Wigner, E. & Witmer, E. E. Über die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik. Z. Phys. 51, 859–886 (1928).

    CAS  Google Scholar 

  10. Brocklehurst, B. Magnetic fields and radical reactions: recent developments and their role in nature. Chem. Soc. Rev. 31, 301–311 (2002).

    CAS  PubMed  Google Scholar 

  11. Steiner, U. E. & Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51–147 (1989).

    CAS  Google Scholar 

  12. Lambert, N. et al. Quantum biology. Nat. Phys. 9, 10–18 (2013).

    CAS  Google Scholar 

  13. Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004).

    CAS  PubMed  Google Scholar 

  14. Xu, J. et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540 (2021).

    CAS  PubMed  Google Scholar 

  15. Gilch, P., Pöllinger-Dammer, F., Musewald, C., Michel-Beyerle, M. E. & Steiner, U. E. Magnetic field effect on picosecond electron transfer. Science 281, 982–984 (1998).

    CAS  PubMed  Google Scholar 

  16. Klein, J. H., Schmidt, D., Steiner, U. E. & Lambert, C. Complete monitoring of coherent and incoherent spin flip domains in the recombination of charge-separated states of donor-iridium complex-acceptor triads. J. Am. Chem. Soc. 137, 11011–11021 (2015).

    CAS  PubMed  Google Scholar 

  17. Kim, T. et al. Magnetic-field-induced modulation of charge-recombination dynamics in a rosarin-fullerene complex. Angew. Chem. Int. Ed. 60, 9379–9383 (2021).

    CAS  Google Scholar 

  18. Mims, D., Herpich, J., Lukzen, N. N., Steiner, U. E. & Lambert, C. Readout of spin quantum beats in a charge-separated radical pair by pump-push spectroscopy. Science 374, 1470–1474 (2021).

    CAS  PubMed  Google Scholar 

  19. Feskov, S. V. et al. Magnetic field effect on ion pair dynamics upon bimolecular photoinduced electron transfer in solution. J. Chem. Phys. 150, 024501 (2019).

    PubMed  Google Scholar 

  20. Devir-Wolfman, A. H. et al. Short-lived charge-transfer excitons in organic photovoltaic cells studied by high-field magneto-photocurrent. Nat. Commun. 5, 4529 (2014).

    CAS  PubMed  Google Scholar 

  21. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    PubMed  Google Scholar 

  22. Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79, 5566–5571 (1983).

    CAS  Google Scholar 

  23. Zhu, H., Yang, Y., Wu, K. & Lian, T. Charge transfer dynamics from photoexcited semiconductor quantum dots. Annu. Rev. Phys. Chem. 67, 259–281 (2016).

    CAS  PubMed  Google Scholar 

  24. Harris, R. D. et al. Electronic processes within quantum dot-molecule complexes. Chem. Rev. 116, 12865–12919 (2016).

    CAS  PubMed  Google Scholar 

  25. Mongin, C., Garakyaraghi, S., Razgoniaeva, N., Zamkov, M. & Castellano, F. N. Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369–372 (2016).

    CAS  PubMed  Google Scholar 

  26. Xia, P. et al. Achieving spin-triplet exciton transfer between silicon and molecular acceptors for photon upconversion. Nat. Chem. 12, 137–144 (2020).

    CAS  PubMed  Google Scholar 

  27. Lu, H., Chen, X., Anthony, J. E., Johnson, J. & Beard, M. C. Sensitizing singlet fission with perovskite nanocrystals. J. Am. Chem. Soc. 141, 4919–4927 (2019).

    CAS  PubMed  Google Scholar 

  28. Wu, M. et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10, 31–34 (2016).

    CAS  Google Scholar 

  29. Thompson, N. J. et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nat. Mater. 13, 1039–1043 (2014).

    CAS  PubMed  Google Scholar 

  30. Tabachnyk, M. et al. Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals. Nat. Mater. 13, 1033–1038 (2014).

    CAS  PubMed  Google Scholar 

  31. Gholizadeh, E. M. et al. Photochemical upconversion of near-infrared light from below the silicon bandgap. Nat. Photon. 14, 585–590 (2020).

    CAS  Google Scholar 

  32. Wen, S. et al. Future and challenges for hybrid upconversion nanosystems. Nat. Photon. 13, 828–838 (2019).

    CAS  Google Scholar 

  33. Wang, J. et al. Spin-controlled charge recombination pathways across the inorganic/organic interface. J. Am. Chem. Soc. 142, 4723–4731 (2020).

    CAS  PubMed  Google Scholar 

  34. Weinberg, D. J. et al. Spin-selective charge recombination in complexes of CdS quantum dots and organic hole acceptors. J. Am. Chem. Soc. 136, 14513–14518 (2014).

    CAS  PubMed  Google Scholar 

  35. Jin, T. et al. Enhanced triplet state generation through radical pair intermediates in BODIPY-quantum dot complexes. J. Chem. Phys. 151, 241101 (2019).

    PubMed  Google Scholar 

  36. Lee, A. Y. et al. Quantum dot–organic molecule conjugates as hosts for photogenerated spin qubit pairs. J. Am. Chem. Soc. 145, 4372–4377 (2023).

    CAS  PubMed  Google Scholar 

  37. Olshansky, J. H. et al. Using photoexcited core/shell quantum dots to spin polarize appended radical qubits. J. Am. Chem. Soc. 142, 13590–13597 (2020).

    CAS  PubMed  Google Scholar 

  38. Liu, M. et al. Spin-enabled photochemistry using nanocrystal-molecule hybrids. Chem 8, 1720–1733 (2022).

    CAS  Google Scholar 

  39. Gupta, J. A., Awschalom, D. D., Efros, A. L. & Rodina, A. V. Spin dynamics in semiconductor nanocrystals. Phys. Rev. B 66, 125307 (2002).

    Google Scholar 

  40. Zhang, Y. et al. Hyperfine-induced electron-spin dephasing in negatively charged colloidal quantum dots: a survey of size dependence. J. Phys. Chem. Lett. 12, 9481–9487 (2021).

    CAS  PubMed  Google Scholar 

  41. Luo, X. et al. Triplet energy transfer from CsPbBr3 nanocrystals enabled by quantum confinement. J. Am. Chem. Soc. 141, 4186–4190 (2019).

    CAS  PubMed  Google Scholar 

  42. Pu, C. et al. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 6, 652–670 (2013).

    CAS  Google Scholar 

  43. Wang, J. et al. Marcus inverted region of charge transfer from low-dimensional semiconductor materials. Nat. Commun. 12, 6333 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dworak, L., Roth, S. & Wachtveitl, J. Charge transfer-induced state filling in CdSe quantum dot–alizarin complexes. J. Phys. Chem. C 121, 2613–2619 (2017).

    CAS  Google Scholar 

  45. Feng, D. et al. Dynamic evolution from negative to positive photocharging in colloidal CdS quantum dots. Nano Lett. 17, 2844–2851 (2017).

    CAS  PubMed  Google Scholar 

  46. Machatová, Z. et al. Study of natural anthraquinone colorants by EPR and UV/vis spectroscopy. Dyes Pigm. 132, 79–93 (2016).

    Google Scholar 

  47. Wang, J., Ding, T. & Wu, K. Charge transfer from n-doped nanocrystals: mimicking intermediate events in multielectron photocatalysis. J. Am. Chem. Soc. 140, 7791–7794 (2018).

    CAS  PubMed  Google Scholar 

  48. Riese, S. et al. Giant magnetic field effects in donor–acceptor triads: on the charge separation and recombination dynamics in triarylamine–naphthalenediimide triads with bis-diyprrinato-palladium(ii), porphodimethenato-palladium(ii), and palladium(ii)–porphyrin photosensitizers. J. Chem. Phys. 153, 054306 (2020).

    CAS  PubMed  Google Scholar 

  49. Weiss, E. A. et al. Making a molecular wire: charge and spin transport through para-phenylene oligomers. J. Am. Chem. Soc. 126, 5577–5584 (2004).

    CAS  PubMed  Google Scholar 

  50. Shornikova, E. V. et al. Surface spin magnetism controls the polarized exciton emission from CdSe nanoplatelets. Nat. Nanotechnol. 15, 277–282 (2020).

    CAS  PubMed  Google Scholar 

  51. Dyakonov, M. I. & Khaetskii, A. Spin Physics in Semiconductors Vol. 157 (Springer, 2008).

  52. Zhu, H. et al. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett. 14, 1263–1269 (2014).

    CAS  PubMed  Google Scholar 

  53. Lambert, C. & Redmond, R. W. Triplet energy level of β-carotene. Chem. Phys. Lett. 228, 495–498 (1994).

    CAS  Google Scholar 

  54. Dugave, C. & Demange, L. Cistrans isomerization of organic molecules and biomolecules: Implications and applications. Chem. Rev. 103, 2475–2532 (2003).

    CAS  PubMed  Google Scholar 

  55. Rodriguez-Amaya, D. B. Food Carotenoids: Chemistry, Biology and Technology (John Wiley & Sons, 2015).

  56. Yu, W. W. & Peng, X. G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. 41, 2368–2371 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

K.W. acknowledges financial support from the National Natural Science Foundation of China (grant no. 22173098), the Chinese Academy of Sciences (grant nos. XDB0970303 and YSBR-007), Dalian Institute of Chemical Physics (grant no. DICP I202106) and the Fundamental Research Funds for the Central Universities (grant no. 20720220009). K.W. also acknowledges the New Cornerstone Science Foundation through the XPLORER PRIZE. M.L. acknowledges Y. Lv and J. Du for the transmission electron microscopy measurements of QDs.

Author information

Authors and Affiliations

Authors

Contributions

K.W. initiated the idea and supervised the project. M.L. synthesized the samples and performed the spectroscopy with the help of J.Z. M.L. and J.Z. performed the simulations. G.Z., Y.L., Y.Y. and K.G. participated in the spectroscopy experiments. K.W. and M.L. wrote the manuscript with inputs from all authors.

Corresponding author

Correspondence to Kaifeng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Ulrich Steiner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–24, Tables 1–7, Equations (1)–(14) and References.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhu, J., Zhao, G. et al. Coherent manipulation of photochemical spin-triplet formation in quantum dot–molecule hybrids. Nat. Mater. 24, 260–267 (2025). https://doi.org/10.1038/s41563-024-02061-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-02061-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing