Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resolving and routing magnetic polymorphs in a 2D layered antiferromagnet

Abstract

Polymorphism, commonly denoting diverse molecular or crystal structures, is crucial in the natural sciences. In van der Waals antiferromagnets, a new type of magnetic polymorphism arises, presenting multiple layer-selective magnetic structures with identical total magnetization. However, resolving and manipulating such magnetic polymorphs remain challenging. Here, phase-resolved magnetic second harmonic generation microscopy is used to elucidate magnetic polymorphism in 2D layered antiferromagnet CrSBr, demonstrating deterministic and layer-selective switching of magnetic polymorphs. Using a nonlinear magneto-optical technique, we unambiguously resolve the polymorphic spin-flip transitions in CrSBr bilayers and tetralayers through both the amplitude and phase of light. Remarkably, the deterministic routing of polymorphic spin-flip transitions originates from a ‘layer-sharing’ effect, where the transitions are governed by laterally extended layers acting as ‘control bits’. We envision that such controllable magnetic polymorphism could be ubiquitous for van der Waals layered antiferromagnets, enabling new designs and constructions of spintronic and opto-spintronic devices for probabilistic computation and neuromorphic engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The combinatorial nature of layered antiferromagnets.
Fig. 2: Resolving the layered antiferromagnetism in bilayer CrSBr.
Fig. 3: Magneto-SHG hysteresis on tetralayer CrSBr.
Fig. 4: Magneto-PL loop and spectra on the non-isolated 4L CrSBr.
Fig. 5: Resolving the magnetic structures and transitions of non-isolated 4L and extended 2L CrSBr.
Fig. 6: The layer-sharing effect in few-layer CrSBr.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding authors on reasonable request. Experimental source data for Figs. 26 are provided with this paper. Source data are provided with this paper.

References

  1. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  PubMed  Google Scholar 

  2. Klein, D. R. et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys. 15, 1255–1260 (2019).

    CAS  Google Scholar 

  3. Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993–3998 (2019).

    CAS  PubMed  Google Scholar 

  4. Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, e2003240 (2020).

    PubMed  Google Scholar 

  5. Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).

    Google Scholar 

  6. Wang, Q. et al. The magnetic genome of two-dimensional van der Waals materials. ACS Nano 16, 6960–7079 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang, W.-B., Qu, Q., Zhu, P. & Lam, C. H. Robust intrinsic ferromagnetism and half semiconductivity in stable twodimensionalsingle-layer chromium trihalides. J. Mater. Chem. C 3, 12457–12468 (2015).

    CAS  Google Scholar 

  8. Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).

    Google Scholar 

  9. Yang, K., Wang, G. Y., Liu, L., Lu, D. & Wu, H. Triaxial magnetic anisotropy in the two-dimensional ferromagnetic semiconductor CrSBr. Phys. Rev. B 104, 144416 (2021).

    CAS  Google Scholar 

  10. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    CAS  PubMed  Google Scholar 

  11. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    CAS  PubMed  Google Scholar 

  12. Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    CAS  PubMed  Google Scholar 

  14. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    CAS  PubMed  Google Scholar 

  15. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    CAS  PubMed  Google Scholar 

  16. Jo, J. et al. Nonvolatile electric control of antiferromagnet CrSBr. Nano Lett. 24, 4471–4477 (2024).

    CAS  PubMed  Google Scholar 

  17. Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    CAS  PubMed  Google Scholar 

  18. Chen, W. et al. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 366, 983–987 (2019).

    CAS  PubMed  Google Scholar 

  19. Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    CAS  PubMed  Google Scholar 

  20. Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    CAS  PubMed  Google Scholar 

  21. Cenker, J. et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 17, 256–261 (2022).

    CAS  PubMed  Google Scholar 

  22. Diederich, G. M. et al. Tunable interaction between excitons and hybridized magnons in a layered semiconductor. Nat. Nanotechnol. 18, 23–28 (2023).

    CAS  PubMed  Google Scholar 

  23. Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. 20, 1657–1662 (2021).

    CAS  PubMed  Google Scholar 

  24. Wu, F. et al. Quasi-1D electronic transport in a 2D magnetic semiconductor. Adv. Mater. 34, e2109759 (2022).

    PubMed  Google Scholar 

  25. Bae, Y. J. et al. Exciton-coupled coherent magnons in a 2D semiconductor. Nature 609, 282–286 (2022).

    CAS  PubMed  Google Scholar 

  26. Klein, J. et al. The bulk van der Waals layered magnet CrSBr is a quasi-1D material. ACS Nano 17, 5316–5328 (2023).

    CAS  PubMed  Google Scholar 

  27. Ziebel, M. E. et al. CrSBr: an air-stable, two-dimensional magnetic semiconductor. Nano Lett. 24, 4319–4329 (2024).

    CAS  PubMed  Google Scholar 

  28. Tabataba-Vakili, F. et al. Doping-control of excitons and magnetism in few-layer CrSBr. Nat. Commun. 15, 4735 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, Z. et al. Probing spin textures in atomically thin CrSBr through tunneling magnetoresistance. Preprint at https://doi.org/10.48550/arXiv.2407.13230 (2024).

  30. Peitgen, H.-O., Jürgens, H. & Saupe, D. Chaos and Fractals: New Frontiers of Science 2nd edn (Springer, 2004).

  31. Grimaldi, R. P. Discrete and Combinatorial Mathematics: An Applied Introduction 5th edn (Pearson, 2003).

  32. Niu, B. et al. Coexistence of magnetic orders in two-dimensional magnet CrI3. Nano Lett. 20, 553–558 (2019).

    PubMed  Google Scholar 

  33. Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science 364, 973–976 (2019).

    CAS  PubMed  Google Scholar 

  34. Tschudin, M. A. et al. Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nat. Commun. 15, 6005 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    CAS  Google Scholar 

  36. Zhang, Z. et al. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 19, 3138–3142 (2019).

    CAS  PubMed  Google Scholar 

  37. Marques-Moros, F., Boix-Constant, C., Mañas-Valero, S., Canet-Ferrer, J. & Coronado, E. Interplay between optical emission and magnetism in the van der Waals magnetic semiconductor CrSBr in the two-dimensional limit. ACS Nano 17, 13224–13231 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ni, Z. et al. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order. Nat. Nanotechnol. 16, 782–786 (2021).

    CAS  PubMed  Google Scholar 

  39. Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

    CAS  PubMed  Google Scholar 

  40. Guo, X. et al. Extraordinary phase transition revealed in a van der Waals antiferromagnet. Nat. Commun. 15, 6472 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen, Y. R. Second Harmonic and Sum-Frequency Spectroscopy: Basics and Applications (World Scientific, 2023).

  42. Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005).

    CAS  Google Scholar 

  43. Kirilyuk, A. & Rasing, T. Magnetization-induced-second-harmonic generation from surfaces and interfaces. J. Opt. Soc. Am. B 22, 148–167 (2005).

    CAS  Google Scholar 

  44. Leute, S., Lottermoser, T. & Fröhlich, D. Nonlinear spatially resolved phase spectroscopy. Opt. Lett. 24, 1520–1522 (1999).

    CAS  PubMed  Google Scholar 

  45. Wang, Z. et al. Contrast-enhanced phase-resolved second harmonic generation microscopy. Opt. Lett. 49, 2117–2120 (2024).

    CAS  PubMed  Google Scholar 

  46. Hubert, A. & Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, 1998).

  47. Sierra, J. F., Fabian, J., Kawakami, R. K., Roche, S. & Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).

    CAS  PubMed  Google Scholar 

  48. Camsari, K. Y., Sutton, B. M. & Datta, S. P-bits for probabilistic spin logic. Appl. Phys. Rev. 6, 011305 (2019).

    Google Scholar 

  49. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Google Scholar 

Download references

Acknowledgements

The work at Fudan University was supported by the National Key Research and Development Program of China (grant nos. 2022YFA1403302 and 2019YFA0308404), the National Natural Science Foundation of China (grant nos. 12034003, 11427902, 91950201 and 12004077), the Science and Technology Commission of Shanghai Municipality (grant nos. 20JC1415900, 21JC1402000, 23JC1400400 and 2019SHZDZX01), the Program of Shanghai Academic Research Leader (grant no. 20XD1400300), the Shanghai Municipal Education Commission (grant no. 2021KJKC-03-61) and the China National Postdoctoral Program for Innovative Talents (grant no. BX20200086). Z.L. acknowledges support from the National Natural Science Foundation of China (grant nos. 92365204 and 12274298) and the National Key R&D program of China (grant no. 2022YFA1604403).

Author information

Authors and Affiliations

Authors

Contributions

Shiwei W. conceived and supervised the project. Z.Sun and C.H. performed the experiments with assistance from Z.Sheng, Shuang W., Z.W. and B.L. Y.C., Q.M. and Z.L. provided the CrSBr single crystals. Z.Sun, C.H. and Shiwei W. analysed the data and wrote the paper with inputs from W.-T.L., Z.Y., Y.W. and J.S.

Corresponding author

Correspondence to Shiwei Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Illustration of phase-SHG measurements.

a, Schematic of the phase-resolved SHG setup. SCM, superconducting magnet; Obj, objective; HWP, half-wave plate; BS, beamsplitter; SBC, Soleil-Babinet compensator; SPF, short-pass filter; PMT, photomultiplier tube. b, Vector diagram of the orthogonal second-harmonic electric polarizations of CrSBr (\({\overrightarrow{{\boldsymbol{E}}}}_{CrSBr}^{2\omega }\)) and quartz (\({\overrightarrow{{\boldsymbol{E}}}}_{qartz}^{2\omega }\)), with the slow (\({\overrightarrow{SBC}}_{{\rm{slow}}}\)) and fast (\({\overrightarrow{SBC}}_{{\rm{fast}}}\)) axis of SBC aligned parallel to \({\overrightarrow{{\boldsymbol{E}}}}_{CrSBr}^{2\omega }\) and \({\overrightarrow{{\boldsymbol{E}}}}_{quartz}^{2\omega }\), respectively. The analyzer is set at an angle θ relative to the fast axis of SBC. c,d, Azimuthal SHG polarization patterns of 2 L CrSBr at ‘0 T (forward)’ (c) and ‘0 T (backward)’ (d). e, Azimuthal SHG polarization patterns of y-cut quartz. The angle ϕ = 0° denotes the alignment to the b-axis of CrSBr and the x-axis of quartz.

Extended Data Fig. 2 Phase-SHG of the 2L CrSBr with different external phase.

a,b, Phase-SHG images at ‘0 T (backward)’ (a) and ‘0 T (forward)’ (b). c, Phase-SHG intensity as a function of external phase shift. d, Phase-SHG hysteresis loop. The external phase shift in (a), (b) and (d) was set at 7π/6 (arrows in (c)). Scale bar: 5 µm.

Extended Data Fig. 3 SHG images of isolated 4L CrSBr.

SHG images at −0.2 T (forward) with stochastic domains during different field sweep cycles. Scale bar: 5 µm.

Extended Data Fig. 4 Magneto-PL hysteresis on the isolated 4L CrSBr.

PL hysteresis loops measured at the same position as in Fig. 3c.

Extended Data Fig. 5 Magneto-SHG images of the non-isolated 4L CrSBr with extended 2L.

The 4L region appears as a uniform ___domain extending over 20 μm throughout the field sweep. Scale bar: 5 µm.

Extended Data Fig. 6 Magneto-SHG loop and SHG excitation spectra on the non-isolated 4L CrSBr.

a, SHG hysteresis loop. b-e, SHG excitation spectra at the AFM (b), FM (c), ‘Type-I’ (d) and ‘Type-II’ (e) states, grouped by the number of FM and AFM interfaces listed in Extended Data Table 1. The error bars presented as mean values ± S.D. The excitation photon energy used for SHG loop in (a) is marked by the dashed line.

Extended Data Fig. 7 Alternative transition route for the non-isolated 4L CrSBr and extended 2L.

Compared to Fig. 5f, the magnetic structures of the bilayer with M = 0 and tetralayer with M = 0, ±2 are replaced by their spatial-inversion counterparts. The layer-sharing effect no longer appears in this magnetic evolution.

Extended Data Fig. 8 Magneto-SHG on different non-isolated 4L CrSBr.

a, Optical microscopic image of a non-isolated 4L CrSBr adjacent to a 2L on the left and a thin flake on the right. The 2L and 4L regions are delineated by white dashed lines. b, SHG image at −0.25 T (forward). The 4L region splits into two domains. c,d, SHG hysteresis loops measured at the green (c) and blue (d) dots in (b), with arrows pointing to the corresponding magnetic field. e, SHG image at −0.25 T (forward) obtained under a different thermal cycle. The magnetic domains and ___domain wall remain stable. f,g, The corresponding SHG hysteresis loops, which are repetitive. Scale bar: 5 μm.

Extended Data Table 1 Permutational layered magnetic structures in 4L CrSBr

Supplementary information

Supplementary Information

Supplementary text, Fig. 1 and source data table.

Source data

Source Data Fig. 2

Experimental source data of Fig. 2.

Source Data Fig. 3

Experimental source data of Fig. 3.

Source Data Fig. 4

Experimental source data of Fig. 4.

Source Data Fig. 5

Experimental source data of Fig. 5.

Source Data Fig. 6

Experimental source data of Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Hong, C., Chen, Y. et al. Resolving and routing magnetic polymorphs in a 2D layered antiferromagnet. Nat. Mater. 24, 226–233 (2025). https://doi.org/10.1038/s41563-024-02074-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-02074-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing