Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Platinum hydride formation during cathodic corrosion in aqueous solutions

Subjects

Abstract

Cathodic corrosion is an electrochemical phenomenon that etches metals at moderately negative potentials. Although cathodic corrosion probably occurs by forming a metal-containing anion, such intermediate species have not yet been observed. Here, aiming to resolve this long-standing debate, our work provides such evidence through X-ray absorption spectroscopy. High-energy-resolution X-ray absorption near-edge structure experiments are used to characterize platinum nanoparticles during cathodic corrosion in 10 mol l−1 NaOH. These experiments detect minute chemical changes in the Pt during corrosion that match first-principles simulations of X-ray absorption spectra of surface platinum multilayer hydrides. Thus, this work supports the existence of hydride-like platinum during cathodic corrosion. Notably, these results provide a direct observation of these species under conditions where they are highly unstable and where prominent hydrogen bubble formation interferes with most spectroscopy methods. Therefore, this work identifies the elusive intermediate that underlies cathodic corrosion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OCEAN-based spectra for hydrogen-covered platinum and bulk platinides.
Fig. 2: Experimental HERFD-XANES spectra for platinum nanoparticles.
Fig. 3: Comparison of experimental and computational HERFD-XANES difference spectra.
Fig. 4: Phase diagram and surface models of hydrogen-covered platinum.

Similar content being viewed by others

Data availability

All data used for this study are available within the Article and its Supplementary Information. Source data are provided with this paper. The data files are also available from the corresponding authors upon request.

References

  1. Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, 1974).

  2. Jerkiewicz, G. Applicability of platinum as a counter-electrode material in electrocatalysis research. ACS Catal. 12, 2661–2670 (2022).

    Article  CAS  Google Scholar 

  3. Haber, F. The phenomenon of the formation of metallic dust from cathodes. Trans. Am. Electrochem. Soc. 2, 189–196 (1902).

    CAS  Google Scholar 

  4. Yanson, A. I. et al. Cathodic corrosion: a quick, clean, and versatile method for the synthesis of metallic nanoparticles. Angew. Chem. Int. Ed. 50, 6346–6350 (2011).

    Article  CAS  Google Scholar 

  5. Arulmozhi, N., Hersbach, T. J. P. & Koper, M. T. M. Nanoscale morphological evolution of monocrystalline Pt surfaces during cathodic corrosion. Proc. Natl Acad. Sci. USA 117, 32267–32277 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elnagar, M. M., Hermann, J. M., Jacob, T. & Kibler, L. A. An affordable option to Au single crystals through cathodic corrosion of a wire: fabrication, electrochemical behavior, and applications in electrocatalysis and spectroscopy. Electrochim. Acta 372, 137867 (2021).

    Article  CAS  Google Scholar 

  7. Yang, Y. et al. Elucidating cathodic corrosion mechanisms with operando electrochemical transmission electron microscopy. J. Am. Chem. Soc. 144, 15698–15708 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Hersbach, T. J. P. et al. Alkali metal cation effects in structuring Pt, Rh, and Au surfaces through cathodic corrosion. ACS Appl. Mater. Interfaces 10, 39363–39379 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Bennett, E. et al. A synthetic route for the effective preparation of metal alloy nanoparticles and their use as active electrocatalysts. ACS Catal. 6, 1533–1539 (2016).

    Article  CAS  Google Scholar 

  10. Lawrence, M. J., Kolodziej, A. & Rodriguez, P. Controllable synthesis of nanostructured metal oxide and oxyhydroxide materials via electrochemical methods. Curr. Opin. Electrochem. 10, 7–15 (2018).

    Article  CAS  Google Scholar 

  11. Yanson, Y. I. & Yanson, A. I. Cathodic corrosion. I. Mechanism of corrosion via formation of metal anions in aqueous medium. Low. Temp. Phys. 39, 304–311 (2013).

    Article  CAS  Google Scholar 

  12. Hersbach, T. J. P. & Koper, M. T. M. Cathodic corrosion: 21st century insights into a 19th century phenomenon. Curr. Opin. Electrochem. 26, 100653 (2021).

    Article  CAS  Google Scholar 

  13. Friebel, D. et al. Balance of nanostructure and bimetallic interactions in Pt model fuel cell catalysts: in situ XAS and DFT study. J. Am. Chem. Soc. 134, 9664–9671 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Merte, L. R. et al. Electrochemical oxidation of size-selected Pt nanoparticles studied using in situ high-energy-resolution X-ray absorption spectroscopy. ACS Catal. 2, 2371–2376 (2012).

    Article  CAS  Google Scholar 

  15. Teliska, M., O’Grady, W. E. & Ramaker, D. E. Determination of H adsorption sites on Pt/C electrodes in HClO4 from Pt L23 X-ray absorption spectroscopy. J. Phys. Chem. B 108, 2333–2344 (2004).

    Article  CAS  Google Scholar 

  16. Hersbach, T. J. P. et al. Base-accelerated degradation of nanosized platinum electrocatalysts. ACS Catal. 11, 9904–9915 (2021).

    Article  CAS  Google Scholar 

  17. Bronger, W., Müller, P., Schmitz, D. & Spittank, H. Synthese und Struktur von Na2PtH4, einem ternären Hydrid mit quadratisch planaren PtH42− Baugruppen. Z. Anorg. Allg. Chem. 516, 35–41 (1984).

    Article  CAS  Google Scholar 

  18. Bronger, W. & Auffermann, G. High pressure synthesis and structure of Na2PtH6. J. Alloy. Compd. 219, 45–47 (1995).

    Article  CAS  Google Scholar 

  19. Karpov, A., Nuss, J., Wedig, U. & Jansen, M. Cs2Pt: a platinide(-II) exhibiting complete charge separation. Angew. Chem. Int. Ed. 42, 4818–4821 (2003).

    Article  CAS  Google Scholar 

  20. Arrieta, R. & Brgoch, J. Forming platinide phases under pressure in the Cs–Pt system. J. Phys. Chem. C 126, 2062–2069 (2022).

    Article  CAS  Google Scholar 

  21. Teherani, T. H., Peer, W. J., Lagowski, J. J. & Bard, A. J. Electrochemical behavior and standard potential of gold(1−) ion in liquid ammonia. J. Am. Chem. Soc. 100, 7768–7770 (1978).

    Article  CAS  Google Scholar 

  22. Tran, N. E. & Lagowski, J. J. Metal ammonia solutions: solutions containing argentide ions. Inorg. Chem. 40, 1067–1068 (2001).

    Article  CAS  Google Scholar 

  23. Firman, T. K. & Landis, C. R. Structure and electron counting in ternary transition metal hydrides. J. Am. Chem. Soc. 120, 12650–12656 (1998).

    Article  CAS  Google Scholar 

  24. Elnagar, M. M., Jacob, T. & Kibler, L. A. Cathodic corrosion of Au in aqueous methanolic alkali metal hydroxide electrolytes: notable role of water. Electrochem. Sci. Adv. 2, 1–11 (2022).

    Article  Google Scholar 

  25. Hanselman, S., Calle-Vallejo, F. & Koper, M. T. M. Computational description of surface hydride phases on Pt(111) electrodes. J. Chem. Phys. 158, 014703 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Evazzade, I., Zagalskaya, A. & Alexandrov, V. Revealing elusive intermediates of platinum cathodic corrosion through DFT simulations. J. Phys. Chem. Lett. 13, 3047–3052 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Bratsch, S. & Lagowski, J. Predicted stabilities of monatomic anions in water and liquid ammonia at 298.15 K. Polyhedron 5, 1763–1770 (1986).

    Article  CAS  Google Scholar 

  28. Hersbach, T. J. P., Yanson, A. I. & Koper, M. T. M. Anisotropic etching of platinum electrodes at the onset of cathodic corrosion. Nat. Commun. 7, 12653 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hersbach, T. J. P., Mints, V. A., Calle-Vallejo, F., Yanson, A. I. & Koper, M. T. M. Anisotropic etching of rhodium and gold as the onset of nanoparticle formation by cathodic corrosion. Faraday Discuss. 193, 207–222 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Pantelouris, A., Kueper, G., Hormes, J., Feldmann, C. & Jansen, M. Anionic gold in Cs3AuO and Rb3AuO Established by X-ray absorption spectroscopy. J. Am. Chem. Soc. 117, 11749–11753 (1995).

    Article  CAS  Google Scholar 

  31. Vinson, J. Advances in the OCEAN-3 spectroscopy package. Phys. Chem. Chem. Phys. 24, 12787–12803 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 1, 15010 (2015).

    Article  CAS  Google Scholar 

  33. Ghebouli, M. A. et al. Theoretical prediction of the fundamental properties for the ternary Li2PtH6 and Na2PtH6. J. Solid State Chem. 196, 498–503 (2012).

    Article  CAS  Google Scholar 

  34. Kunimatsu, K., Senzaki, T., Samjeské, G., Tsushima, M. & Osawa, M. Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochim. Acta 52, 5715–5724 (2007).

    Article  CAS  Google Scholar 

  35. Barber, J., Morin, S. & Conway, B. E. Specificity of the kinetics of H2 evolution to the structure of single-crystal Pt surfaces, and the relation between opd and upd H. J. Electroanal. Chem. 446, 125–138 (1998).

    Article  CAS  Google Scholar 

  36. Tan, T. L., Wang, L.-L., Johnson, D. D. & Bai, K. Hydrogen deposition on Pt(111) during electrochemical hydrogen evolution from a first-principles multiadsorption-site study. J. Phys. Chem. C 117, 22696–22704 (2013).

    Article  CAS  Google Scholar 

  37. Tan, T. L., Wang, L.-L., Zhang, J., Johnson, D. D. & Bai, K. Platinum nanoparticle during electrochemical hydrogen evolution: adsorbate distribution, active reaction species, and size effect. ACS Catal. 5, 2376–2383 (2015).

    Article  CAS  Google Scholar 

  38. McCrum, I. T., Bondue, C. J. & Koper, M. T. M. Hydrogen-induced step-edge roughening of platinum electrode surfaces. J. Phys. Chem. Lett. 10, 6842–6849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramaker, D. E. & Koningsberger, D. C. The atomic AXAFS and Δμ XANES techniques as applied to heterogeneous catalysis and electrocatalysis. Phys. Chem. Chem. Phys. 12, 5514 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Jerkiewicz, G. Hydrogen sorption at/in electrodes. Prog. Surf. Sci. 57, 137–186 (1998).

    Article  CAS  Google Scholar 

  41. Stoerzinger, K. A. et al. Probing the surface of platinum during the hydrogen evolution reaction in alkaline electrolyte. J. Phys. Chem. B 122, 864–870 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Chen, X., McCrum, I. T., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode. Angew. Chem. Int. Ed. 56, 15025–15029 (2017).

    Article  CAS  Google Scholar 

  43. Rizo, R. et al. Investigating the presence of adsorbed species on Pt steps at low potentials. Nat. Commun. 13, 2550 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Monteiro, M. C. O. et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  45. Osawa, M., Tsushima, M., Mogami, H., Samjeské, G. & Yamakata, A. Structure of water at the electrified platinum−water interface: a study by surface-enhanced infrared absorption spectroscopy. J. Phys. Chem. C 112, 4248–4256 (2008).

    Article  CAS  Google Scholar 

  46. Feng, J. et al. Cathodic corrosion of a bulk wire to nonaggregated functional nanocrystals and nanoalloys. ACS Appl. Mater. Interfaces 10, 9532–9540 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  48. Sokaras, D. et al. A seven-crystal Johann-type hard X-ray spectrometer at the Stanford Synchrotron Radiation Lightsource. Rev. Sci. Instrum. 84, 053102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  51. Swanson, H. E. & Tatge, E. Standard X-Ray Diffraction Powder Patterns (US Government Printing Office, 1953).

  52. McBride, J. R., Graham, G. W., Peters, C. R. & Weber, W. H. Growth and characterization of reactively sputtered thin‐film platinum oxides. J. Appl. Phys. 69, 1596–1604 (1991).

    Article  CAS  Google Scholar 

  53. van Setten, M. J. et al. The PSEUDODOJO: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).

    Article  Google Scholar 

  54. Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 1–10 (2013).

    Article  Google Scholar 

  55. Vinson, J. & Shirley, E. L. Fast, efficient, and accurate dielectric screening using a local real-space approach. Phys. Rev. B 103, 1–24 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge M.-Y. Wu from MYAnalysis for assisting with transmission electron microscopy measurements. Certain equipment, instruments, software or materials, commercial or non-commercial, are identified in this Article to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement of any product or service by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. This work was supported in part by the Netherlands Organization for Scientific Research (NWO) in the framework of the Solar Fuels Graduate Program. The use of supercomputing facilities at SURFsara was sponsored by NWO Physical Sciences, with financial support by NWO. OCEAN simulations were performed using resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility operated under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

T.J.P.H., D.S. and M.T.M.K. designed the experimental study. T.J.P.H. conducted and coordinated most of the experimental work, data analysis and data reduction. A.T.G.-E., O.A.P.M. and J.V. performed the OCEAN simulations activities. S.H. and I.T.M. generated the platinum surfaces for first-principles calculations. A.T.G.-E., D.A., J.T.F., T.F.J., A.C.G., P.K., T.K. and D.S. participated in the experimental work. T.H. designed the operando grazing incidence cell. T.J.P.H. led the drafting of the manuscript, with contributions from A.T.G.-E., S.H., J.V., D.S. and M.T.M.K. for editing. D.S. and M.T.M.K. supervised the work and obtained funding and resources. All authors discussed the results and the manuscript.

Corresponding authors

Correspondence to Dimosthenis Sokaras or Marc T. M. Koper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Marcel Risch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, discussion and Table 1.

Supplementary Data 1

DFT coordinates used as OCEAN input structure files for Fig. 1a,c.

Supplementary Data 2

DFT coordinates used as OCEAN input structure files for Fig. 1b,d and Supplementary Figs. 8 and 12.

Supplementary Data 3

DFT coordinates used as OCEAN input structure files for Supplementary Fig. 10.

Source data

Source Data Fig. 1

OCEAN spectra and difference spectra for hydrogen-covered platinum surfaces and bulk platinides.

Source Data Fig. 2

Experimental HERFD-XANES spectra, smoothed experimental HERFD-XANES spectra and unsmoothed experimental HERFD-XANES spectra.

Source Data Fig. 3

Smoothed experimental HERFD-XANES difference spectra and rescaled OCEAN difference spectra for hydrogen-covered platinum surfaces and bulk platinides.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hersbach, T.J.P., Garcia-Esparza, A.T., Hanselman, S. et al. Platinum hydride formation during cathodic corrosion in aqueous solutions. Nat. Mater. 24, 574–580 (2025). https://doi.org/10.1038/s41563-024-02080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-02080-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing