Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High electrostrain in a lead-free piezoceramic from a chemopiezoelectric effect

Abstract

Piezoelectric materials are indispensable in electromechanical actuators, which require a large electrostrain with a fast and precise response. By designing a chemopiezoelectric effect, we developed an approach to achieve a high electrostrain of 1.9% under −3 kV mm−1, at 1 Hz, corresponding to an effective piezoelectric coefficient of >6,300 pm V−1 at room temperature in lead-free potassium sodium niobate piezoceramics. This electrostrain has satisfactory fatigue resistance and thermal stability, and low hysteresis, far outperforming existing lead-based and lead-free perovskite counterparts. From tracer diffusion, atomic optical emission spectrometry experiments, combined with machine-learning molecular dynamics and phase-field simulations, we attribute the high electrostrain to short-range hopping of oxygen vacancies near ceramic surfaces under an alternating electric field, which is supported by strain levels reaching 3.0% under the same applied field when the sample was annealed at a low oxygen partial pressure. These findings provide an additional degree of freedom for designing materials on the basis of defect engineering, which will favour not only the electrostrain of piezoelectrics but also the functional properties of a broader range of oxide-based materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thickness dependence of electrostrain at room temperature.
Fig. 2: Evidence of the proposed mechanism underlying the thickness-dependent giant electrostrain.
Fig. 3: Theoretical calculation of oxygen-vacancy-induced large electrostrains in KNN ceramics.
Fig. 4: Exceptional electrostrain performance in KNN ceramics of various thicknesses.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information. Any other relevant data are also available upon request from the corresponding authors. Source data are provided with this paper.

References

  1. Li, J.-F. Lead-Free Piezoelectric Materials (Wiley, 2020).

  2. Li, F. et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 364, 264–268 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    Article  CAS  Google Scholar 

  4. Narayan, B. J. et al. Electrostrain in excess of 1% in polycrystalline piezoelectrics. Nat. Mater. 17, 427–431 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Damjanovic, D. & Demartin, M. Contribution of the irreversible displacement of ___domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics. J. Phys. Condens. Matter 9, 4943–4953 (1997).

    Article  CAS  Google Scholar 

  6. Zhang, M.-H. et al. Enhanced electric-field-induced strains in (K,Na)NbO3 piezoelectrics from heterogeneous structures. Mater. Today 46, 44–53 (2021).

    Article  Google Scholar 

  7. Yao, F.-Z. et al. Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv. Funct. Mater. 26, 1217–1224 (2016).

    Article  CAS  Google Scholar 

  8. Liu, Y.-X., Thong, H.-C., Cheng, Y.-Y.-S., Li, J.-W. & Wang, K. Defect-mediated ___domain-wall motion and enhanced electric-field-induced strain in hot-pressed K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J. Appl. Phys. 129, 024102 (2021).

    Article  CAS  Google Scholar 

  9. Liu, H. et al. Giant piezoelectricity in oxide thin films with nanopillar structure. Science 369, 292–297 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Höfling, M. et al. Control of polarization in bulk ferroelectrics by mechanical dislocation imprint. Science 372, 961–964 (2021).

    Article  PubMed  Google Scholar 

  11. Xu, Z. et al. Identifying the interfacial polarization in non-stoichiometric lead-free perovskites by defect engineering. Angew. Chem. Int. Ed. 62, e202216776 (2023).

    Article  CAS  Google Scholar 

  12. Fu, H. & Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Ren, X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible ___domain switching. Nat. Mater. 3, 91–94 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, Z., Lv, Y., Dai, Y. & Zhang, S. Ultrahigh electro-strain in acceptor-doped KNN lead-free piezoelectric ceramics via defect engineering. Acta Mater. 200, 35–41 (2020).

    Article  CAS  Google Scholar 

  15. Wang, L. et al. Enhanced strain effect of aged acceptor-doped BaTiO3 ceramics with clamping ___domain structures. Appl. Phys. Lett. 110, 102904 (2017).

    Article  Google Scholar 

  16. Dai, Y.-J. et al. High electrostrictive strain induced by defect dipoles in acceptor-doped (K0.5Na0.5)NbO3 ceramics. J. Phys. D Appl. Phys. 49, 275303 (2016).

    Article  Google Scholar 

  17. Cen, Z. et al. Simultaneously improving piezoelectric strain and temperature stability of KNN-based ceramics via defect design. J. Eur. Ceram. Soc. 43, 939–946 (2023).

    Article  CAS  Google Scholar 

  18. Zhao, Z., Dai, Y., Li, X., Zhao, Z. & Zhang, X. The evolution mechanism of defect dipoles and high strain in MnO2-doped KNN lead-free ceramics. Appl. Phys. Lett. 108, 172906 (2016).

    Article  Google Scholar 

  19. Li, C. Q. et al. Dramatic influence of Dy3+ doping on strain and ___domain structure in lead-free piezoelectric 0.935(Na1/2Bi1/2)TiO3–0.065BaTiO3 ceramics. AIP Adv. 5, 127118 (2015).

    Article  Google Scholar 

  20. Huangfu, G. et al. Giant electric field-induced strain in lead-free piezoceramics. Science 331, 341–346 (2022).

    Google Scholar 

  21. Wang, B., Huangfu, G., Zheng, Z. & Guo, Y. Giant electric field‐induced strain with high temperature‐stability in textured KNN‐based piezoceramics for actuator applications. Adv. Funct. Mater. 33, 2214643 (2023).

    Article  CAS  Google Scholar 

  22. Wu, H. et al. Alkali-deficiency driven charged out-of-phase boundaries for giant electromechanical response. Nat. Commun. 12, 2841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Waqar, M. et al. Origin of giant electric-field-induced strain in faulted alkali niobate films. Nat. Commun. 13, 3922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feng, W. et al. Heterostrain-enabled ultrahigh electrostrain in lead-free piezoelectric. Nat. Commun. 13, 5086 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He, X. et al. Ultra-large electromechanical deformation in lead-free piezoceramics at reduced thickness. Mater. Horiz. 11, 1079–1087 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Adhikary, G. D., Daniels, J., Giles, L. & Ranjan, R. Ultrahigh electrostrain in Pb-free piezoceramics: effect of bending. Preprint at https://arxiv.org/abs/2312.15627 (2023)

  27. Tian, S. et al. Defect dipole stretching enables ultrahigh electrostrain. Sci. Adv. 10, adn2829 (2024).

    Article  Google Scholar 

  28. Wang, J., Wang, B., Zhang, H., Zhang, S. & Guo, Y. Ultrahigh electrobending deformation in lead-free piezoelectric ceramics via defect concentration gradient design. Adv. Mater. 36, 2404682 (2024).

    Article  CAS  Google Scholar 

  29. Tsvetkov, D. S., Sereda, V. V., Malyshkin, D. A., Ivanov, I. L. & Zuev, A. Y. Chemical lattice strain in nonstoichiometric oxides: an overview. J. Mater. Chem. A 10, 6351–6375 (2022).

    Article  CAS  Google Scholar 

  30. Park, D.-S. et al. Induced giant piezoelectricity in centrosymmetric oxides. Science 375, 653–657 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Waqar, M., Wu, H., Chen, J., Yao, K. & Wang, J. Evolution from lead-based to lead-free piezoelectrics: engineering of lattices, domains, boundaries, and defects leading to giant response. Adv. Mater. 34, 2106845 (2022).

    Article  CAS  Google Scholar 

  32. Kalinin, S. V. & Spaldin, N. A. Functional ion defects in transition metal oxides. Science 341, 858–859 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, K. & Li, J.-F. Analysis of crystallographic evolution in (Na,K)NbO3-based lead-free piezoceramics by X-ray diffraction. Appl. Phys. Lett. 91, 262902 (2007).

    Article  Google Scholar 

  34. Thong, H.-C. et al. Defect suppression in CaZrO3-modified (K, Na)NbO3-based lead-free piezoceramic by sintering atmosphere control. J. Am. Ceram. Soc. 101, 3393–3401 (2018).

    Article  CAS  Google Scholar 

  35. Gerra, G., Tagantsev, A. K., Setter, N. & Parlinski, K. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3. Phys. Rev. Lett. 96, 107603 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Merz, W. J. Switching time in ferroelectric BaTiO3 and its dependence on crystal thickness. J. Appl. Phys. 27, 938–943 (1956).

    Article  CAS  Google Scholar 

  37. Holzlechner, G., Kastner, D., Slouka, C., Hutter, H. & Fleig, J. Oxygen vacancy redistribution in PbZrxTi1−xO3 (PZT) under the influence of an electric field. Solid State Ion. 262, 625–629 (2014).

    Article  CAS  Google Scholar 

  38. Slouka, C. et al. The effect of acceptor and donor doping on oxygen vacancy concentrations in lead zirconate titanate (PZT). Materials (Basel) 9, 945 (2016).

    Article  PubMed  Google Scholar 

  39. Frömling, T., Hutter, H. & Fleig, J. Oxide ion transport in donor-doped Pb(ZrxTi1−x)O3: near-surface diffusion properties. J. Am. Ceram. Soc. 95, 1692–1700 (2012).

    Article  Google Scholar 

  40. Crank, J. The Mathematics of Diffusion (Oxford Univ. Press, 1979).

  41. Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials – on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).

    Article  CAS  Google Scholar 

  42. Ryu, I., Choi, J. W., Cui, Y. & Nix, W. D. Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59, 1717–1730 (2011).

    Article  CAS  Google Scholar 

  43. Kong, S., Kumar, N., Checchia, S., Cazorla, C. & Daniels, J. Defect-driven structural distortions at the surface of relaxor ferroelectrics. Adv. Funct. Mater. 29, 1900344 (2019).

    Article  Google Scholar 

  44. Thong, H.-C. et al. Machine learning interatomic potential for molecular dynamics simulation of the ferroelectric KNbO3 perovskite. Phys. Rev. B 107, 014101 (2023).

    Article  CAS  Google Scholar 

  45. Gottschalk, S., Hahn, H., Flege, S. & Balogh, A. G. Oxygen vacancy kinetics in ferroelectric PbZr0.4Ti0.6O3. J. Appl. Phys. 104, 114106 (2008).

    Article  Google Scholar 

  46. Chen, L.-Q. & Yang, W. Computer simulation of the ___domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics. Phys. Rev. B 50, 15752 (1994).

    Article  CAS  Google Scholar 

  47. Choudhury, S., Li, Y. L., Krill, C. E. III & Chen, L.-Q. Phase-field simulation of polarization switching and ___domain evolution in ferroelectric polycrystals. Acta Mater. 53, 5313–5321 (2005).

    Article  CAS  Google Scholar 

  48. Cao, Y., Shen, J., Randall, C. & Chen, L.-Q. Effect of ferroelectric polarization on ionic transport and resistance degradation in BaTiO3 by phase‐field approach. J. Am. Ceram. Soc. 97, 3568–3575 (2014).

    Article  CAS  Google Scholar 

  49. Gao, R., Shi, X., Wang, J., Zhang, G. & Huang, H. Designed giant room‐temperature electrocaloric effects in metal-free organic perovskite [MDABCO](NH4)I3 by phase–field simulations. Adv. Funct. Mater. 31, 2104393 (2021).

    Article  CAS  Google Scholar 

  50. Yang, T., Wang, B., Hu, J.-M. & Chen, L.-Q. Domain dynamics under ultrafast electric-field pulses. Phys. Rev. Lett. 124, 107601 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Pohlmann, H., Wang, J.-J., Wang, B. & Chem, L.-Q. A thermodynamic potential and the temperature–composition phase diagram for single-crystalline K1−xNaxNbO3 (0 ≤ x ≤ 0.5). J. Appl. Phys. 110, 102906 (2017).

    Google Scholar 

  52. Bidault, O., Goux, P., Kchikech, M., Belkaoumi, M. & Maglione, M. Space-charge relaxation in perovskites. Phys. Rev. B 49, 7868–7873 (1994).

    Article  CAS  Google Scholar 

  53. Jonscher, A. K. Dielectric Relaxation in Solids (Chelsea Dielectrics Press, 1983).

  54. Damjanovic, D. & Demartin, M. The Rayleigh law in piezoelectric ceramics. J. Phys. D Appl. Phys. 29, 2057–2060 (1996).

    Article  CAS  Google Scholar 

  55. Zhang, M.-H., Liu, Y.-X., Wang, K., Koruza, J. & Schultheiß, J. Origin of high electromechanical properties in (K,Na)NbO3-based lead-free piezoelectrics modified with BaZrO3. Phys. Rev. Mater. 4, 064407 (2020).

    Article  CAS  Google Scholar 

  56. Saito, Y. et al. Lead-free piezoceramics. Nature 432, 84–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Li, P. et al. Ultrahigh piezoelectric properties in textured (K,Na)NbO3-based lead-free ceramics. Adv. Mater. 30, 1705171 (2018).

  58. Lv, X. & Wu, J. Effects of a phase engineering strategy on the strain properties in KNN-based ceramics. J. Mater. Chem. C 7, 2037–2048 (2019).

    Article  CAS  Google Scholar 

  59. Yin, J. et al. Deciphering the atomic-scale structural origin for large dynamic electromechanical response in lead-free Bi0.5Na0.5TiO3-based relaxor ferroelectrics. Nat. Commun. 13, 6333 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu, X. & Tan, X. Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv. Mater. 28, 574–578 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Wu, J. et al. Ultrahigh field-induced strain in lead-free ceramics. Nano Energy 76, 105037 (2020).

    Article  CAS  Google Scholar 

  62. Wang, Y. et al. Large piezoelectricity in ternary lead‐free single crystals. Adv. Electron. Mater. 6, 1900949 (2020).

    Article  CAS  Google Scholar 

  63. Hao, J., Bai, W., Li, W. & Zhai, J. Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 95, 1998–2006 (2012).

    Article  CAS  Google Scholar 

  64. Sutapun, M., Vittayakorn, W., Muanghlua, R. & Vittayakorn, N. High piezoelectric response in the new coexistent phase boundary of 0.87BaTiO3–(0.13 − x)BaZrO3xCaTiO3. Mater. Des. 86, 564–574 (2015).

    Article  CAS  Google Scholar 

  65. Murakami, S. et al. High strain (0.4%) Bi(Mg2/3Nb1/3)O3‐BaTiO3‐BiFeO3 lead‐free piezoelectric ceramics and multilayers. J. Am. Ceram. Soc. 101, 5428–5442 (2018).

    Article  CAS  Google Scholar 

  66. Wang, D. High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3–BaTiO3 ceramics. ACS Appl. Energy Mater. 1, 4403–4412 (2018).

    Article  CAS  Google Scholar 

  67. Adhikary, G. D., Singh, D. N., Tina, G. A., Muleta, G. J. & Ranjan, R. Ultrahigh electrostrain >1% in lead-free piezoceramics: role of disk dimension. J. Appl. Phys. 134, 054101 (2023).

    Article  CAS  Google Scholar 

  68. Wu, C. et al. Effects of Mn-doping on the structure and electrical properties of Sm-PMN-PT piezoceramics. J. Adv. Dielectr. 13, 2350004 (2023).

    Article  CAS  Google Scholar 

  69. Thong, H.-C. et al. Domain engineering in bulk ferroelectric ceramics via mesoscopic chemical inhomogeneity. Adv. Sci. 9, 2200998 (2022).

    Article  CAS  Google Scholar 

  70. Li, F. et al. Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of ___domain engineered (1 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals. J. Appl. Phys. 108, 034106 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Balke, N., Lupascu, D. C., Granzow, T. & Rödel, J. Fatigue of lead zirconate titanate ceramics. I: unipolar and DC loading. J. Am. Ceram. Soc. 90, 1081–1087 (2007).

    Article  CAS  Google Scholar 

  72. Glaum, J., Granzow, T. & Rödel, J. Evaluation of ___domain wall motion in bipolar fatigued lead-zirconate-titanate: a study on reversible and irreversible contributions. J. Appl. Phys. 107, 104119 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful discussions with Z.-L. Tang at the School of Materials Science and Engineering, Tsinghua University, X. Li and Y. Gu at the BL02U2 beamline of Shanghai Synchrotron Radiation Facility and X. Mo at the Institute of Acoustics, Chinese Academy of Sciences. A portion of this work was performed on the Steady High Magnetic Field Facilities, High Magnetic Field Laboratory, CAS. K.W. acknowledges support from the Basic Science Centre Program of the NSFC (no. 52388201), the National Key Research and Development Program of China (no. 2020YFA0711700) and the National Nature Science Foundation of China (no. 52032005). Y.-X.L. acknowledges support from the National Nature Science Foundation of China (nos. 52302148 and 52311530094). Z.S. and S.J.S. acknowledge support from the European Union’s Horizon 2020 Research and Innovation Program (no. 101017709).

Author information

Authors and Affiliations

Authors

Contributions

Ze Xu, Y.-X.L., S.Z. and K.W. conceived the original idea and directed the project. Ze Xu, Z.L., X.-X.C., H.-F.H. and C.W. performed the sample preparation, while Ze Xu, Y.-X.L., H.-C.T., F.-Z.Y., Zhanpeng Xu, P.K. and M.L. analysed the electrical results. X.S. and H.H. performed the phase-field simulations. Ze Xu, Y.-X.L., Y.J., Z.L., F.Z., F.C., H.S., R.Y. and B.X. conducted the structural characterization. Ze Xu, Z.S. and S.J.S. conducted the 18O tracer diffusion measurements and analysed the data. H.T., P.T. and X.J. tested the strain distribution. Ze Xu and Y.-X.L. analysed the data with the help of C.-B.-W.L., X.Z., X.R., Z.D., W.G., X.W. and J.-F.L., and K.W. supervised the overall research work. Ze Xu and Y.-X.L. wrote the manuscript. X.S., D.W., H.H., K.W. and S.Z. revised the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yi-Xuan Liu, Houbing Huang, Shujun Zhang or Ke Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Method, Figs. 1–28, Tables 1–10 and Note 1.

Supplementary Data 1

Atomic coordinates of the computational models.

Source data

Source Data Fig. 1

Source data for Fig. 1a,b,d–h.

Source Data Fig. 2

Source data for Fig. 2a–f.

Source Data Fig. 3

Source data for Fig. 3c,h,i.

Source Data Fig. 4

Source data for Fig. 4a–d,f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Shi, X., Liu, YX. et al. High electrostrain in a lead-free piezoceramic from a chemopiezoelectric effect. Nat. Mater. 24, 565–573 (2025). https://doi.org/10.1038/s41563-024-02092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-02092-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing