Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electroreduction-driven distorted nanotwins activate pure Cu for efficient hydrogen evolution

Abstract

Precious metals such as Pt are favoured as catalysts for the hydrogen evolution reaction (HER) due to their excellent catalytic activity. However, the scarcity and high cost of precious metals have prompted researchers to explore cheaper alternatives such as Cu. Nevertheless, Cu shows poor catalytic performance due to weak binding with intermediates. Here the catalytic activity of pure Cu is activated via electroreduction-driven modification of the local structure, achieving a HER catalytic performance superior to commercial Pt/C catalysts for working current densities greater than 100 mA cm−2 in acid electrolyte. Activation involved two steps. First, polycrystalline Cu2O nanoparticles were prepared via pulsed laser ablation, resulting in grain boundaries within the Cu2O particles as observed using electron microscopy. Next, the Cu2O particles were electroreduced to pure Cu, inducing the formation of distorted nanotwins and edge dislocations. These local structures induce high lattice strain and decrease the Cu coordination number, enhancing the interaction between Cu and intermediates—as calculated using density functional theory—leading to the excellent catalytic activity and durability of the catalyst. Our observations show that low-cost pure Cu can be a promising HER catalyst for large-scale industrial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and characterization of DNTs-Cu catalysts.
Fig. 2: Analyses on the origin of lattice strain in DNTs-Cu.
Fig. 3: 3D atomic structure and 3D strain tensor measurements in a DNTs-Cu particle.
Fig. 4: HER activity and durability of different catalysts in an argon-saturated 0.5 M H2SO4 aqueous electrolyte.

Similar content being viewed by others

Data availability

All data that support the findings of this work are available within the Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Lin, C. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4, 1012–1023 (2021).

    Article  CAS  Google Scholar 

  2. Clark, D. et al. Single-step hydrogen production from NH3, CH4, and biogas in stacked proton ceramic reactors. Science 376, 390–393 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Pang, B. et al. Laser-assisted high-performance PtRu alloy for pH-universal hydrogen evolution. Energy Environ. Sci. 15, 102–108 (2022).

    Article  CAS  Google Scholar 

  4. Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Rong, C. et al. Electronic structure engineering of single-atom Ru sites via Co–N4 sites for bifunctional pH-universal water splitting. Adv. Mater. 34, 2110103 (2022).

    Article  CAS  Google Scholar 

  6. Luo, M. & Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017).

    Article  CAS  Google Scholar 

  7. He, T. et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 598, 76–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Fan, J. et al. Spatially confined PdHx metallenes by tensile strained atomic Ru layers for efficient hydrogen evolution. J. Am. Chem. Soc. 145, 5710–5717 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, L. Boosting activity and stability of metal single-atom catalysts via regulation of coordination number and local composition. J. Am. Chem. Soc. 143, 18854–18858 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Lei, Z. et al. Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity. Nat. Commun. 13, 24 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu, G. et al. In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nat. Commun. 13, 4200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Atlan, C. et al. Imaging the strain evolution of a platinum nanoparticle under electrochemical control. Nat. Mater. 22, 754–761 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, J. et al. Exploring the strain effect in single particle electrochemistry using Pd nanocrystals. Angew. Chem. Int. Ed. 62, e202304424 (2023).

    Article  CAS  Google Scholar 

  15. Huang, D. et al. Conflicting roles of coordination number on catalytic performance of single-atom Pt catalysts. ACS Catal. 11, 5586–5592 (2021).

    Article  CAS  Google Scholar 

  16. He, Y. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat. Catal. 5, 212–221 (2022).

    Article  CAS  Google Scholar 

  17. Li, A. et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat. Catal. 5, 109–118 (2022).

    Article  CAS  Google Scholar 

  18. Li, Z. et al. A silver catalyst activated by stacking faults for the hydrogen evolution reaction. Nat. Catal. 2, 1107–1114 (2019).

    Article  CAS  Google Scholar 

  19. Kim, S. J. et al. Flat-surface-assisted and self-regulated oxidation resistance of Cu(111). Nature 603, 434–438 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chung, K. et al. Non-oxidized bare copper nanoparticles with surface excess electrons in air. Nat. Nanotechnol. 17, 285–291 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han, Z. et al. Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction. Nat. Commun. 13, 3158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stewart, I. E., Ye, S., Chen, Z., Flowers, P. F. & Wiley, B. J. Synthesis of Cu–Ag, Cu–Au, and Cu–Pt core–shell nanowires and their use in transparent conducting films. Chem. Mater. 27, 7788–7794 (2015).

    Article  CAS  Google Scholar 

  23. Zhao, J. et al. Achieving high electrocatalytic efficiency on copper: a low-cost alternative to platinum for hydrogen generation in water. ACS Catal. 5, 4115–4120 (2015).

    Article  CAS  Google Scholar 

  24. Yu, L. et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10, 1820–1827 (2017).

    Article  CAS  Google Scholar 

  25. Kang, W. J. et al. Strain-activated copper catalyst for pH-universal hydrogen evolution reaction. Adv. Func. Mater. 32, 2112367 (2022).

    Article  CAS  Google Scholar 

  26. Edalati, K. & Horita, Z. J. High-pressure torsion of pure metals: influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Mater. 59, 6831–6836 (2011).

    Article  CAS  Google Scholar 

  27. Lu, L., Sui, M. L. & Lu, K. Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463–1465 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Lu, L., Shen, Y., Chen, X., Qian, L. & Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Lu, L., Chen, X., Huang, X. & Lu, K. Revealing the maximum strength in nanotwinned copper. Science 323, 607–610 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Fernández-Arias, M. et al. Copper nanoparticles obtained by laser ablation in liquids as bactericidal agent for dental applications. Appl. Surf. Sci. 507, 145032 (2020).

    Article  Google Scholar 

  32. Huang, C.-L. et al. Twinning enhances efficiencies of metallic catalysts toward electrolytic water splitting. Adv. Energy Mater. 11, 2101827 (2021).

    Article  CAS  Google Scholar 

  33. Song, M. et al. Oriented attachment induces fivefold twins by forming and decomposing high-energy grain boundaries. Science 367, 40–45 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Johnson, C. L. et al. Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nat. Mater. 7, 120–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Sun, X. et al. Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607, 708–713 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. LaGrow, A. P., Ward, M. R., Lloyd, D. C., Gai, P. L. & Boyes, E. D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 139, 179–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Zou, L., Li, J., Zakharov, D., Stach, E. A. & Zhou, G. In situ atomic-scale imaging of the metal/oxide interfacial transformation. Nat. Commun. 8, 307 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Miao, J., Ercius, P. & Billinge, S. J. L. Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157 (2016).

    Article  PubMed  Google Scholar 

  39. Zhou, J. et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500–503 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Li, Z. et al. Probing the atomically diffuse interfaces in Pd@Pt core–shell nanoparticles in three dimensions. Nat. Commun. 14, 2934 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, J. et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater. 18, 1309–1314 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Lagadec, M. F. & Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19, 1140–1150 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Jung, H. et al. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C–C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 141, 4624–4633 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Deng, B. et al. The crystal plane is not the key factor for CO2-to-methane electrosynthesis on reconstructed Cu2O microparticles. Angew. Chem. Int. Ed. 61, e202114080 (2022).

    Article  CAS  Google Scholar 

  45. Liu, C. et al. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C–C coupling. Angew. Chem. Int. Ed. 61, e202113498 (2022).

    Article  CAS  Google Scholar 

  46. Wu, Z.-Z. et al. Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144, 259–269 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Zhu, Q. et al. Hierarchical twinning governed by defective twin boundary in metallic materials. Sci. Adv. 8, eabn8299 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, J. et al. Small and well-dispersed Cu nanoparticles on carbon nanofibers: self-supported electrode materials for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 41, 18044–18049 (2016).

    Article  CAS  Google Scholar 

  49. Javan, H., Asghari, E., Ashassi-Sorkhabi, H. & Moradi-Haghighi, M. A low-cost platinum-free electrocatalyst based on carbon quantum dots decorated Ni–Cu hierarchical nanocomposites for hydrogen evolution reaction. Int. J. Hydrogen Energy 45, 19324–19334 (2020).

    Article  CAS  Google Scholar 

  50. Yao, M. et al. Rational design of self-supported Cu@WC core–shell mesoporous nanowires for pH-universal hydrogen evolution reaction. Appl. Catal. B 280, 656–661 (2019).

    Google Scholar 

  51. Tiwari, A. P., Kim, D., Kim, Y., Prakash, O. & Lee, H. Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. Nano Energy 28, 366–372 (2016).

    Article  CAS  Google Scholar 

  52. Xue, Y. et al. Self-catalyzed growth of Cu@graphdiyne core–shell nanowires array for high efficient hydrogen evolution cathode. Nano Energy 30, 858–866 (2016).

    Article  CAS  Google Scholar 

  53. Li, F. et al. Synthesis of Cu–MoS2/rGO hybrid as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Power Sources 292, 15–22 (2015).

    Article  CAS  Google Scholar 

  54. Cao, M. et al. Facile electrodeposition of Ni–Cu–P dendrite nanotube films with enhanced hydrogen evolution reaction activity and durability. ACS Appl. Mater. Interfaces 10, 35224–35233 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Kuang, M., Wang, Q., Han, P. & Zheng, G. Cu, Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv. Energy Mater. 7, 1700193 (2017).

    Article  Google Scholar 

  56. Shen, Y. et al. Nickel–copper alloy encapsulated in graphitic carbon shells as electrocatalysts for hydrogen evolution reaction. Adv. Energy Mater. 8, 1701759 (2018).

    Article  Google Scholar 

  57. Chao, T. et al. Atomically dispersed copper–platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. Int. Ed. 56, 16047–16051 (2017).

    Article  CAS  Google Scholar 

  58. Yao, Q. et al. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem. Int. Ed. 58, 13983–13988 (2019).

    Article  CAS  Google Scholar 

  59. Liu, Y. et al. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew. Chem. Int. Ed. 59, 1718–1726 (2020).

    Article  CAS  Google Scholar 

  60. Li, J., Li, F., Guo, S.-X., Zhang, J. & Ma, J. PdCu@Pd nanocube with Pt-like activity for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 9, 8151–8160 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Manikandan, A. et al. Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions. J. Mater. Chem. A 5, 13320–13328 (2017).

    Article  CAS  Google Scholar 

  62. Hou, M. et al. Coralline-like CoP3@Cu as an efficient electrocatalyst for the hydrogen evolution reaction in acidic and alkaline solutions. New J. Chem. 44, 18601–18607 (2020).

    Article  CAS  Google Scholar 

  63. Ji, L. et al. One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Appl. Catal. B 251, 87–93 (2019).

    Article  CAS  Google Scholar 

  64. Feng, Y. et al. Mechanically processing copper plate into active catalyst for electrochemical hydrogen production. Acta Mater. 237, 118164 (2022).

    Article  CAS  Google Scholar 

  65. Ji, L.-P. et al. Epitaxial growth of high-energy copper facets for promoting hydrogen evolution reaction. Small 18, 2107481 (2022).

    Article  CAS  Google Scholar 

  66. Ruan, Y.-C. et al. Exposing Cu(100) surface via ion-implantation-induced oxidization and etching for promoting hydrogen evolution reaction. Langmuir 38, 2993–2999 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, Y. et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature 592, 60–64 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Xu, R. et al. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat. Mater. 14, 1099–1103 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.F. gratefully acknowledges funding support from the National Key R&D Program of China (2020YFA0406204), the National Natural Science Foundation of China (no. 52071083) and the Zhuhai Fudan Innovation Institute. Z.L. gratefully acknowledges funding support from the National Natural Science Foundation of China (no. 52401292), the Postdoctoral Innovation Talents Support Program of China (BX2021066) and the China Postdoctoral Science Foundation (no. 2021M700024). Y. Lu gratefully acknowledges funding support from the National Natural Science Foundation of China (nos. 12074016 and 12274009), the Beijing Natural Science Foundation for Outstanding Youth Science Foundation (JQ24009) and the Research and Development Project from the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2022SX-TD001). J.Z. gratefully acknowledges funding support from the National Natural Science Foundation of China (no. 22172003) and strong support from the Electron Microscopy Laboratory at Peking University for the use of aberration-corrected electron microscopes and the High-performance Computing Platform of Peking University. We thank R. Che from Fudan University for charge distribution testing.

Author information

Authors and Affiliations

Contributions

D.S. and F.F. conceived the experiments and supervised the project. Z.L. and Y.F. designed and conducted the experiments. Z.L., H.L., Y. Liu, Y.S. and F.W. performed the experimental data analysis. Z.L., Y. Lu and F.F. wrote the paper. Y.W., Y. Lu and M.S. performed atomic-scale TEM measurements and analysed the data. J.Z. and Z.X. performed the atomic-resolution electron tomography experiments and 3D structural analysis. X.D., M.S. and D.S. contributed the experimental platform. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jihan Zhou, Yue Lu, Fang Fang or Dalin Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Mingshang Jin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–49, Tables 1–3 and Refs. 1–27.

Supplementary Data 1

The atomic coordinates of computational models.

Source data

Source Data Fig. 1

XAS data plotted in Fig. 1e,f.

Source Data Fig. 2

Atomic distance data plotted in Fig. 2c.

Source Data Fig. 3

Radial distribution function and statistical data plotted in Fig. 3d,k.

Source Data Fig. 4

Electrochemical data plotted in Fig. 4a–h.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, Y., Liu, H. et al. Electroreduction-driven distorted nanotwins activate pure Cu for efficient hydrogen evolution. Nat. Mater. 24, 424–432 (2025). https://doi.org/10.1038/s41563-024-02098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-02098-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing