Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid precision targeting of nanoparticles to lung via caveolae pumping system in endothelium

Abstract

Modern medicine seeks precision targeting, imaging and therapy to maximize efficacy and avoid toxicities. Nanoparticles (NPs) have tremendous yet unmet clinical potential to carry and deliver imaging and therapeutic agents systemically with tissue precision. But their size contributes to rapid scavenging by the reticuloendothelial system and poor penetration of key endothelial cell (EC) barriers, limiting target tissue uptake, safety and efficacy. Here we discover the ability of the EC caveolae pumping system to outpace scavenging and deliver NPs rapidly and specifically into the lungs. Gold and dendritic NPs are conjugated to antibodies targeting caveolae of the lung microvascular endothelium. SPECT-CT imaging and biodistribution analyses reveal that rat lungs extract most of the intravenous dose within minutes to achieve precision lung imaging and targeting with high lung concentrations exceeding peak blood levels. These results reveal how much ECs can both limit and promote tissue penetration of NPs and the power and size-dependent limitations of the caveolae pumping system. This study provides a new retargeting paradigm for NPs to avoid reticuloendothelial system uptake and achieve rapid precision nanodelivery for future diagnostic and therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: Imaging and quantifying the biodistribution of APP2-targeted PAMAM dendritic NPs.
Fig. 2: Characterization of GNPs and their immunoconjugates.
Fig. 3: In vivo tracking of lung EC caveolae-targeted GNPs with increasing core diameters.
Fig. 4: In vivo imaging and biodistribution analysis of RINC targeting.
Fig. 5: Targeting indices quantified for each antibody and RINC.
Fig. 6: Selectivity of CPS in redirecting NP to the lung and away from RES.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article, Supplementary Information and Source Data files. Other relevant data are available for research purposes from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Schnitzer, J. E. Vascular targeting as a strategy for cancer therapy. N. Engl. J. Med. 339, 472–474 (1998).

    PubMed  CAS  Google Scholar 

  2. Shuvaev, V. V., Brenner, J. S. & Muzykantov, V. R. Targeted endothelial nanomedicine for common acute pathological conditions. J. Control. Release 219, 576–595 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    PubMed  CAS  Google Scholar 

  4. Poon, W., Kingston, B. R., Ouyang, B., Ngo, W. & Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 15, 819–829 (2020).

    PubMed  CAS  Google Scholar 

  5. Li, J. & Kataoka, K. Chemo-physical strategies to advance the in vivo functionality of targeted nanomedicine: the next generation. J. Am. Chem. Soc. 143, 538–559 (2021).

    PubMed  CAS  Google Scholar 

  6. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Thomas, O. S. & Weber, W. Overcoming physiological barriers to nanoparticle delivery—are we there yet? Front. Bioeng. Biotechnol. 7, 415 (2019).

    PubMed  PubMed Central  Google Scholar 

  8. Xu, S., Olenyuk, B. Z., Okamoto, C. T. & Hamm-Alvarez, S. F. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv. Drug Deliv. Rev. 65, 121–138 (2013).

    PubMed  CAS  Google Scholar 

  9. Steichen, S. D., Caldorera-Moore, M. & Peppas, N. A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci. 48, 416–427 (2013).

    PubMed  CAS  Google Scholar 

  10. Park, K. Transcending nanomedicine to the next level: are we there yet? J. Control. Release 298, 213 (2019).

    PubMed  CAS  Google Scholar 

  11. Sun, D., Zhou, S. & Gao, W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano 14, 12281–12290 (2020).

    PubMed  CAS  Google Scholar 

  12. van der Meel, R., Lammers, T. & Hennink, W. E. Cancer nanomedicines: oversold or underappreciated? Expert Opin. Drug Deliv. 14, 1–5 (2017).

    PubMed  Google Scholar 

  13. Kim, S. M., Faix, P. H. & Schnitzer, J. E. Overcoming key biological barriers to cancer drug delivery and efficacy. J. Control. Release 267, 15–30 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    CAS  Google Scholar 

  15. Schnitzer, J. E. Update on the cellular and molecular basis of capillary permeability. Trends Cardiovasc. Med. 3, 124–130 (1993).

    PubMed  CAS  Google Scholar 

  16. Park, K. The beginning of the end of the nanomedicine hype. J. Control. Release 305, 221–222 (2019).

    PubMed  CAS  Google Scholar 

  17. Dai, Q. et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12, 8423–8435 (2018).

    PubMed  CAS  Google Scholar 

  18. Cheng, Y. H., He, C., Riviere, J. E., Monteiro-Riviere, N. A. & Lin, Z. Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano 14, 3075–3095 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Sheth, V., Wang, L., Bhattacharya, R., Mukherjee, P. & Wilhelm, S. Strategies for delivering nanoparticles across tumor blood vessels. Adv. Funct. Mater. 31, 2007363 (2021).

    PubMed  CAS  Google Scholar 

  20. Gu, L., Zhang, F., Wu, J. & Zhuge, Y. Nanotechnology in drug delivery for liver fibrosis. Front. Mol. Biosci. 8, 804396 (2021).

    PubMed  CAS  Google Scholar 

  21. Athanasopoulou, F., Manolakakis, M., Vernia, S. & Kamaly, N. Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine 18, 67–84 (2023).

    PubMed  CAS  Google Scholar 

  22. Ghitescu, L., Fixman, A., Simionescu, M. & Simionescu, N. Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis. J. Cell Biol. 102, 1304–1311 (1986).

    PubMed  CAS  Google Scholar 

  23. Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127, 1217–1232 (1994).

    PubMed  CAS  Google Scholar 

  24. Griffin, N. M. et al. Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat. Biotechnol. 28, 83–89 (2010).

    PubMed  CAS  Google Scholar 

  25. Durr, E. et al. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat. Biotechnol. 22, 985–992 (2004).

    PubMed  CAS  Google Scholar 

  26. Massey, K. A. & Schnitzer, J. E. Targeting and imaging signature caveolar molecules in lungs. Proc. Am. Thorac. Soc. 6, 419–430 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. Oh, P. et al. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429, 629–635 (2004).

    PubMed  CAS  Google Scholar 

  28. Oh, P. et al. In vivo proteomic imaging analysis of caveolae reveals pumping system to penetrate solid tumors. Nat. Med. 20, 1062–1068 (2014).

    PubMed  CAS  Google Scholar 

  29. Schnitzer, J. E., McIntosh, D. P., Dvorak, A. M., Liu, J. & Oh, P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science 269, 1435–1439 (1995).

    PubMed  CAS  Google Scholar 

  30. Carver, L. A. & Schnitzer, J. E. Caveolae: mining little caves for new cancer targets. Nat. Rev. Cancer 3, 571–581 (2003).

    PubMed  CAS  Google Scholar 

  31. Schnitzer, J. E., Oh, P., Jacobson, B. S. & Dvorak, A. M. Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor. Proc. Natl Acad. Sci. USA 92, 1759–1763 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Schnitzer, J. E., Oh, P. & McIntosh, D. P. Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science 274, 239–242 (1996).

    PubMed  CAS  Google Scholar 

  33. Oh, P., McIntosh, D. P. & Schnitzer, J. E. Dynamin at the neck of caveolae mediates their budding to form transport vesicles by GTP-driven fission from the plasma membrane of endothelium. J. Cell Biol. 141, 101–114 (1998).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Schnitzer, J. E. Caveolae: from basic trafficking mechanisms to targeting transcytosis for tissue-specific drug and gene delivery in vivo. Adv. Drug Deliv. Rev. 49, 265–280 (2001).

    PubMed  CAS  Google Scholar 

  35. Oh, P. et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat. Biotechnol. 25, 327–337 (2007).

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Chrastina, A., Valadon, P., Massey, K. A. & Schnitzer, J. E. Lung vascular targeting using antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis. J. Vasc. Res. 47, 531–543 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. McIntosh, D. P., Tan, X. Y., Oh, P. & Schnitzer, J. E. Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc. Natl Acad. Sci. USA 99, 1996–2001 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Carver, L. & Schnitzer, J. in Biomedical Aspects of Drug Targeting (eds Muzykantov, V. R. & Torchilin, V. P.) 107–128 (Springer Science+Business Media, 2002).

  39. Valadon, P. et al. Designed auto-assembly of nanostreptabodies for rapid tissue-specific targeting in vivo. J. Biol. Chem. 285, 713–722 (2010).

    PubMed  CAS  Google Scholar 

  40. Schnitzer, J. E. in Whole Organ Approaches to Cellular Metabolism: Permeation, Cellular Uptake, and Product Formation (eds Bassingthwaighte, J. B. et al.) 31–69 (Springer New York, 1998).

  41. Kadam, A. H. et al. Targeting caveolae to pump bispecific antibody to TGF-beta into diseased lungs enables ultra-low dose therapeutic efficacy. PLoS ONE 17, e0276462 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Vallabhajosula, S., Killeen, R. P. & Osborne, J. R. Altered biodistribution of radiopharmaceuticals: role of radiochemical/pharmaceutical purity, physiological, and pharmacologic factors. Semin. Nucl. Med. 40, 220–241 (2010).

    PubMed  Google Scholar 

  43. Cavina, L. et al. Design of radioiodinated pharmaceuticals: structural features affecting metabolic stability towards in vivo deiodination. Eur. J. Org. Chem. 2017, 3387–3414 (2017).

    CAS  Google Scholar 

  44. Nagarajah, J., Janssen, M., Hetkamp, P. & Jentzen, W. Iodine symporter targeting with (124)I/(131)I theranostics. J. Nucl. Med. 58, 34s–38s (2017).

    PubMed  CAS  Google Scholar 

  45. Bruns, R. R. & Palade, G. E. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J. Cell Biol. 37, 277–299 (1968).

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Bundgaard, M. Vesicular transport in capillary endothelium: does it occur? Fed. Proc. 42, 2425–2430 (1983).

    PubMed  CAS  Google Scholar 

  47. Severs, N. J. Caveolae: static inpocketings of the plasma membrane, dynamic vesicles or plain artifact? J. Cell Sci. 90, 341–348 (1988).

    PubMed  Google Scholar 

  48. Thomsen, P., Roepstorff, K., Stahlhut, M. & van Deurs, B. Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 13, 238–250 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. McIntosh, D. P. & Schnitzer, J. E. Caveolae require intact VAMP for targeted transport in vascular endothelium. Am. J. Physiol. Heart Circ. Physiol. 277, H2222–H2232 (1999).

    CAS  Google Scholar 

  50. Schnitzer, J. E., Allard, J. & Oh, P. NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Am. J. Physiol. 268, H48–H55 (1995).

    PubMed  CAS  Google Scholar 

  51. Schnitzer, J. E., Liu, J. & Oh, P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J. Biol. Chem. 270, 14399–14404 (1995).

    PubMed  CAS  Google Scholar 

  52. Stan, R. V., Kubitza, M. & Palade, G. E. PV-1 is a component of the fenestral and stomatal diaphragms in fenestrated endothelia. Proc. Natl Acad. Sci. USA 96, 13203–13207 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Shuvaev, V. V. et al. Spatially controlled assembly of affinity ligand and enzyme cargo enables targeting ferritin nanocarriers to caveolae. Biomaterials 185, 348–359 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Yu, M. & Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9, 6655–6674 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. BioReady™ 40 nm Carboxyl Gold Covalent Conjugation Protocol (nanoComposix, Fortis Life Sciences, 2024); https://cdn.shopify.com/s/files/1/0257/8237/files/BioReady_40_nm_Carboxyl_Gold_Conjugation_Protocol_v2.1.pdf?v=1670554597

Download references

Acknowledgements

We thank C. Ditterich for assistance with paper writing. We thank nanoComposix for help with TEM. This study was supported by the National Institutes of Health (https://www.nih.gov/grantsfunding) through grants awarded to J.E.S. (P01HL119165, R01CA169644 and R01HL169760). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

J.E.S. conceived the study. T.R.N., A.C., M.D.L., B.O. and J.E.S. designed the study. R.Y. and B.C. conducted antibody expression, purification, ELISA and western blotting. T.B. performed site-directed mutagenesis. A.C. prepared and performed SPECT-CT imaging and biodistribution studies of radioimmunoconjugates of PAMAM dendrimers and dendrons. O.C.-R. characterized and purified starting material antibodies. T.R.N. prepared GNP nanoimmunoconjugates. T.R.N. and O.C.-R. characterized GNP nanoimmunoconjugates. T.R.N. characterized GNP radio-nanoimmunoconjugates. T.R.N., A.C. and J.V. performed in vivo SPECT-CT imaging. A.C. and T.R.N. conducted the ex vivo biodistribution study. J.V. and T.R.N. conducted the ICP-MS study. T.R.N. and A.C. collected all data. J.K. conducted statistical analyses. T.R.N., A.C. and J.E.S. wrote the paper. M.D.L. and B.O. revised the paper. All authors read and edited the paper.

Corresponding author

Correspondence to Jan E. Schnitzer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Functionalization of PAMAM G5 dendrimers with APP2 Fab to form supramolecular nanoassembly.

PAMAM G5 were biotinylated using NHS-PEG4-biotin then radiolabeled with N-succinimidyl-3-(4-hydroxy-3-[125I]iodophenyl)propionate and terminated with glycidol. To form supramolecular nanoassembly, the biotinylated 125I labeled PAMAM G5 dendrimers were then noncovalently functionalized with trivalent APP2 streptabodies via streptavidin (SAV)-biotin linkage.

Extended Data Fig. 2 Characterization of Gold Nanoparticles (GNPs).

Size exclusion chromatography (SEC-UV) of unconjugated antibody, GNP and GNP immunoconjugates as indicated in color legend. The UV traces (λabs = 280 nm) show high purity of the samples and absence of high and low molecular weight contaminants.

Extended Data Fig. 3 Functionalization of gold nanoparticles with radioiodinated mAPP2.

PEG-Carboxilic acid terminated gold nanopartilces were conjugated to mAPP2 antibody as described in Methods. EDC: 1-ethyl-3-(3-dimethylamino) propyl carbodiimide, NHS: N-hydroxysulfosuccinimide.

Extended Data Fig. 4 Western blot validation of antibody specificity towards rat APP2.

Membranes, containing (1) 50 ng recombinant rat APP2 protein (aa2-648 + 6XHIS), (2) 30 μg rat lung homogenate, and (3) 30 μg purified plasma membrane fraction of rat lung-derived endothelial cells, probed with mAPP2 and non-specific, mutated mAPP2X show distinct difference in target recognition. mAPP2X shows no binding to rat APP2 nor any native rat lung proteins.

Extended Data Table 1 Time-dependent uptake of APP2-targeted PAMAM G4 dendrons
Extended Data Table 2 Physicochemical characterization of immunonanoconjugates, unconjugated GNPs, and antibodies

Source data

Source Data Fig. 1

Biodistribution data for Fig. 1.

Source Data Fig. 3

ROI analysis data for Fig. 3.

Source Data Fig. 4

Biodistribution data for Fig. 4.

Source Data Fig. 5

Target indices data for Fig. 5.

Source Data Fig. 6

Biodistribution and targeting indices for Figs. 4–6 and ICP-MS data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, T.R., Chrastina, A., Valencia, J. et al. Rapid precision targeting of nanoparticles to lung via caveolae pumping system in endothelium. Nat. Nanotechnol. 20, 144–155 (2025). https://doi.org/10.1038/s41565-024-01786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-024-01786-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research