Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anomalous Hall spin current drives self-generated spin–orbit torque in a ferromagnet

Abstract

Spin–orbit torques enable energy-efficient manipulation of magnetization by electric current and hold promise for applications ranging from non-volatile memory to neuromorphic computing. Here we report the discovery of a giant spin–orbit torque induced by anomalous Hall current in ferromagnetic conductors. This anomalous Hall torque is self-generated as it acts on the magnetization of the ferromagnet that engenders the torque. The magnitude of the anomalous Hall torque is sufficiently large to fully negate magnetic damping of the ferromagnet, which allows us to implement a microwave spin torque nano-oscillator driven by this torque. The peculiar angular symmetry of the anomalous Hall torque favours its use over the conventional spin Hall torque in coupled nano-oscillator arrays. The universal character of the anomalous Hall torque makes it an integral part of the description of coupled spin transport and magnetization dynamics in magnetic nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device geometry and spin-torque ferromagnetic resonance.
Fig. 2: Angular and alloy composition dependence of AHT.
Fig. 3: AHT nano-oscillator.
Fig. 4: Anatomy of AHT.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  PubMed  Google Scholar 

  2. Haidar, M. et al. A single layer spin–orbit torque nano-oscillator. Nat. Commun. 10, 2362 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012).

    CAS  PubMed  Google Scholar 

  4. Liu, L., Pai, C.-F., Ralph, D. C. & Buhrman, R. A. Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices. Phys. Rev. Lett. 109, 186602 (2012).

    PubMed  Google Scholar 

  5. Duan, Z. et al. Nanowire spin torque oscillator driven by spin orbit torques. Nat. Commun. 5, 5616 (2014).

    CAS  PubMed  Google Scholar 

  6. Litvinenko, A. et al. Ultrafast GHz-range swept-tuned spectrum analyzer with 20 ns temporal resolution based on a spin-torque nano-oscillator with a uniformly magnetized ‘free’ layer. Nano Lett. 22, 1874–1879 (2022).

    CAS  PubMed  Google Scholar 

  7. Seifert, T. et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nat. Photonics 10, 483–488 (2016).

    CAS  Google Scholar 

  8. Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008).

    CAS  PubMed  Google Scholar 

  9. Huang, X. et al. Novel spin–orbit torque generation at room temperature in an all-oxide epitaxial La0.7Sr0.3MnO3/SrIrO3 system. Adv. Mater. 33, 2008269 (2021).

    CAS  Google Scholar 

  10. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    CAS  PubMed  Google Scholar 

  11. Yan, G. Q. et al. Quantum sensing and imaging of spin–orbit-torque-driven spin dynamics in the non-collinear antiferromagnet Mn3Sn. Adv. Mater. 34, 2200327 (2022).

    CAS  Google Scholar 

  12. Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).

    CAS  PubMed  Google Scholar 

  13. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS  PubMed  Google Scholar 

  14. Petrović, M. D., Mondal, P., Feiguin, A. E., Plecháč, P. & Nikolić, B. K. Spintronics meets density matrix renormalization group: quantum spin–torque-driven nonclassical magnetization reversal and dynamical buildup of long-range entanglement. Phys. Rev. X 11, 021062 (2021).

    Google Scholar 

  15. Hache, T. et al. Bipolar spin Hall nano-oscillators. Appl. Phys. Lett. 116, 192405 (2020).

    CAS  Google Scholar 

  16. Hamadeh, A. A. et al. Simultaneous multitone microwave emission by DC-driven spintronic nano-element. Sci. Adv. 9, eadk1430 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    CAS  PubMed  Google Scholar 

  18. Li, P. et al. Charge–spin interconversion in epitaxial Pt probed by spin–orbit torques in a magnetic insulator. Phys. Rev. Mater. 5, 064404 (2021).

    CAS  Google Scholar 

  19. Ikebuchi, T., Shiota, Y., Ono, T., Nakamura, K. & Moriyama, T. Crystal orientation dependence of spin Hall angle in epitaxial Pt/FeNi systems. Appl. Phys. Lett. 120, 072406 (2022).

    CAS  Google Scholar 

  20. Safranski, C., Sun, J. Z., Xu, J.-W. & Kent, A. D. Planar Hall driven torque in a ferromagnet/nonmagnet/ferromagnet system. Phys. Rev. Lett. 124, 197204 (2020).

    CAS  PubMed  Google Scholar 

  21. Pauyac, C. O., Chshiev, M., Manchon, A. & Nikolaev, S. A. Spin Hall and spin swapping torques in diffusive ferromagnets. Phys. Rev. Lett. 120, 176802 (2018).

    CAS  PubMed  Google Scholar 

  22. Belashchenko, K. D., Kovalev, A. A. & van Schilfgaarde, M. Interfacial contributions to spin–orbit torque and magnetoresistance in ferromagnet/heavy-metal bilayers. Phys. Rev. B 101, 020407 (2020).

    CAS  Google Scholar 

  23. Hibino, Y. et al. Giant charge-to-spin conversion in ferromagnet via spin–orbit coupling. Nat. Commun. 12, 6254 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, D. et al. Orbital torque in magnetic bilayers. Nat. Commun. 12, 6710 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Safranski, C. et al. Spin caloritronic nano-oscillator. Nat. Commun. 8, 117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013).

    CAS  PubMed  Google Scholar 

  27. Dc, M. et al. Observation of anti-damping spin–orbit torques generated by in-plane and out-of-plane spin polarizations in MnPd3. Nat. Mater. 22, 591–598 (2023).

    CAS  PubMed  Google Scholar 

  28. Gibbons, J. et al. Large exotic spin torques in antiferromagnetic iron rhodium. Phys. Rev. Appl. 18, 024075 (2022).

    CAS  Google Scholar 

  29. Romera, M. et al. Binding events through the mutual synchronization of spintronic nano-neurons. Nat. Commun. 13, 883 (2022).

    PubMed  PubMed Central  Google Scholar 

  30. Bender, S. A. & Tserkovnyak, Y. Thermally driven spin torques in layered magnetic insulators. Phys. Rev. B 93, 064418 (2016).

    Google Scholar 

  31. Amin, V. P., Haney, P. M. & Stiles, M. D. Interfacial spin–orbit torques. J. Appl. Phys. 128, 151101 (2020).

    CAS  Google Scholar 

  32. Gonçalves, A. M. et al. Spin torque ferromagnetic resonance with magnetic field modulation. Appl. Phys. Lett. 103, 172406 (2013).

    Google Scholar 

  33. Safranski, C., Montoya, E. A. & Krivorotov, I. N. Spin–orbit torque driven by a planar Hall current. Nat. Nanotechnol. 14, 27–30 (2019).

    CAS  PubMed  Google Scholar 

  34. Duan, Z. et al. Spin-wave modes in permalloy/platinum wires and tuning of the mode damping by spin Hall current. Phys. Rev. B 90, 024427 (2014).

    CAS  Google Scholar 

  35. Ochoa, H., Zarzuela, R. & Tserkovnyak, Y. Self-induced spin-orbit torques in metallic ferromagnets. J. Magn. Magn. Mater. 538, 168262 (2021).

    CAS  Google Scholar 

  36. Slavin, A. & Tiberkevich, V. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875–1918 (2009).

    CAS  Google Scholar 

  37. Demidov, V. E. et al. Control of magnetic fluctuations by spin current. Phys. Rev. Lett. 107, 107204 (2011).

    CAS  PubMed  Google Scholar 

  38. Amin, V. P., Li, J., Stiles, M. D. & Haney, P. M. Intrinsic spin currents in ferromagnets. Phys. Rev. B 99, 220405(R) (2019).

    Google Scholar 

  39. Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).

    Google Scholar 

  40. Céspedes-Berrocal, D. et al. Current-induced spin torques on single GdFeCo magnetic layers. Adv. Mater. 33, 2007047 (2021).

    Google Scholar 

  41. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    CAS  PubMed  Google Scholar 

  43. Awad, A. A. et al. Long-range mutual synchronization of spin Hall nano-oscillators. Nat. Phys. 13, 292–299 (2017).

    CAS  Google Scholar 

  44. Hassan, O., Faria, R., Camsari, K. Y., Sun, J. Z. & Datta, S. Low-barrier magnet design for efficient hardware binary stochastic neurons. IEEE Magn. Lett. 10, 1–5 (2019).

    Google Scholar 

  45. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic ___domain walls. Nat. Nanotechnol. 8, 527–533 (2013).

    CAS  PubMed  Google Scholar 

  46. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic ___domain walls. Nat. Mater. 12, 611–616 (2013).

    CAS  PubMed  Google Scholar 

  47. Zhang, W. et al. Current-induced ___domain wall motion in a van der Waals ferromagnet Fe3GeTe2. Nat. Commun. 15, 4851 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pham, V. T. et al. Fast current-induced skyrmion motion in synthetic antiferromagnets. Science 384, 307–312 (2024).

    CAS  PubMed  Google Scholar 

  49. Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).

    PubMed  Google Scholar 

  50. Gibbons, J. D., MacNeill, D., Buhrman, R. A. & Ralph, D. C. Reorientable spin direction for spin current produced by the anomalous Hall effect. Phys. Rev. Appl. 9, 064033 (2018).

    CAS  Google Scholar 

  51. Bose, A. et al. Observation of anomalous spin torque generated by a ferromagnet. Phys. Rev. Appl. 9, 064026 (2018).

    CAS  Google Scholar 

  52. Sun, C. et al. Field-free switching of perpendicular magnetization through spin Hall and anomalous Hall effects in ferromagnet–heavy-metal–ferromagnet structures. Phys. Rev. Appl. 12, 034022 (2019).

    CAS  Google Scholar 

  53. Wang, W. et al. Anomalous spin–orbit torques in magnetic single-layer films. Nat. Nanotechnol. 14, 819–824 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kurebayashi, H. et al. An antidamping spin–orbit torque originating from the Berry curvature. Nat. Nanotechnol. 9, 211–217 (2014).

    CAS  PubMed  Google Scholar 

  55. Zhu, L., Zhang, X. S., Muller, D. A., Ralph, D. C. & Buhrman, R. A. Observation of strong bulk damping-like spin–orbit torque in chemically disordered ferromagnetic single layers. Adv. Funct. Mater. 30, 2005201 (2020).

    CAS  Google Scholar 

  56. Liu, L. et al. Electrical switching of perpendicular magnetization in a single ferromagnetic layer. Phys. Rev. B 101, 220402(R) (2020).

    Google Scholar 

  57. Zheng, Z. et al. Field-free spin–orbit torque-induced switching of perpendicular magnetization in a ferrimagnetic layer with a vertical composition gradient. Nat. Commun. 12, 4555 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hibino, Y., Taniguchi, T., Yakushiji, K., Kubota, H. & Yuasa, S. Observation of self-induced spin–orbit torques in Ni–Fe layers with a vertical gradient of magnetization. Phys. Rev. B 109, L180409 (2024).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Nelson for deposition of the multilayers with NixFe100−x alloy composition gradient. This work was supported by the National Science Foundation (ECCS-2213690, X.P. and I.N.K.). Materials development for this project was supported by the National Science Foundation (DMREF-2324203, X.P. and I.N.K.). We acknowledge the use of facilities and instrumentation at the UC Irvine Materials Research Institute (IMRI), which is supported in part by the National Science Foundation through the UC Irvine Materials Research Science and Engineering Center (DMR-2011967, E.A.M. and X.P.). The use of facilities and instrumentation at the Integrated Nanosystems Research Facility (INRF) in the Samueli School of Engineering at the University of California Irvine is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

E.A.M. and I.N.K. designed the study. E.A.M. formulated the experimental approach. X.P. and E.A.M. deposited the multilayer samples, performed device- and film-level experiments, developed the nanofabrication process and made the nanodevices. All authors wrote the paper and discussed the results.

Corresponding authors

Correspondence to Eric Arturo Montoya or Ilya N. Krivorotov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Pedram Khalili Amiri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–12, Figs. 1 and 2, and Tables 1–4.

Source data

Source Data Fig. 1

Source data for Fig. 1c–e.

Source Data Fig. 2

Source data for Fig. 2a,b.

Source Data Fig. 3

Source data for Fig. 3a– c.

Source Data Fig. 4

Source data for Fig. 4b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montoya, E.A., Pei, X. & Krivorotov, I.N. Anomalous Hall spin current drives self-generated spin–orbit torque in a ferromagnet. Nat. Nanotechnol. 20, 353–359 (2025). https://doi.org/10.1038/s41565-024-01819-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-024-01819-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing