Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo transformations of positively charged nanoparticles alter the formation and function of RuBisCO photosynthetic protein corona

Abstract

The impact of nanomaterial transformations on photosynthetic proteins remains largely unknown. We report positively charged iron oxide (Fe3O4) nanoparticles experience transformations in Arabidopsis thaliana plants in vivo that alter the formation and function of RuBisCO protein corona, a key carbon fixation enzyme. In vitro, negatively charged Fe3O4 nanoparticles impact the RuBisCO function but not their positively charged counterparts. Computational and in vitro proteomic analyses revealed that positively charged Fe3O4 nanoparticles preferentially bind to a RuBisCO small subunit that lacks active carboxylation sites. However, both positively and negatively charged nanoparticles decrease RuBisCO carboxylation activity after experiencing transformations in vivo by 3.0 and 1.7 times relative to the controls, respectively. The pH- and lipid-coating-dependent transformations that occur during nanoparticle transport across plant membranes enhance RuBisCO binding to positively charged nanoparticles affecting its distribution in chloroplasts. Elucidating the rules of how nanoparticle properties and transformations affect photosynthetic coronas is crucial for sustainable nano-enabled agriculture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LC-MS/MS proteomic analysis of magnetically retrieved protein coronas of Fe3O4 NPs interfaced with Arabidopsis plant leaves.
Fig. 2: Contrasting effects of positive and negative Fe3O4 NPs on plant photosynthesis in vitro versus in vivo.
Fig. 3: RuBisCO large (RbcL) and small (RbcS) subunit binding and display on Fe3O4 NPs in vitro.
Fig. 4: Coarse-grained simulations of RuBisCO binding orientations on Fe3O4 NPs at varied plant physiological pH values.
Fig. 5: Effect of pH on RuBisCO protein corona formation on Fe3O4 NPs.
Fig. 6: Fe3O4 NP coating with plant lipids affects RuBisCO protein corona formation and distribution in chloroplasts.

Similar content being viewed by others

Data availability

Proteomics data for the proteomic analysis of NPs interfaced in vivo and in vitro are available at https://repository.jpostdb.org/entry/JPST003297.0 and for the partial digestion of RuBisCO with NPs are available at https://repository.jpostdb.org/entry/JPST003300. Any other data supporting the findings of this study are available in the Article and its Supplementary Information or from the corresponding author upon request. Source data are provided with this paper.

References

  1. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hadjidemetriou, M. & Kostarelos, K. Nanomedicine: evolution of the nanoparticle corona. Nat. Nanotechnol. 12, 288–290 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

  4. Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Borgatta, J. R. et al. Biomolecular corona formation on CuO nanoparticles in plant xylem fluid. Environ. Sci.: Nano 8, 1067–1080 (2021).

    CAS  Google Scholar 

  6. Pinals, R. L., Chio, L., Ledesma, F. & Landry, M. P. Engineering at the nano-bio interface: harnessing the protein corona towards nanoparticle design and function. Analyst 145, 5090–5112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prakash, S. & Deswal, R. Analysis of temporally evolved nanoparticle-protein corona highlighted the potential ability of gold nanoparticles to stably interact with proteins and influence the major biochemical pathways in Brassica juncea. Plant Physiol. Biochem. 146, 143–156 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Yu, Y., Dai, W. & Luan, Y. Bio- and eco-corona related to plants: understanding the formation and biological effects of plant protein coatings on nanoparticles. Environ. Pollut. 317, 120784 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Kurepa, J., Shull, T. E. & Smalle, J. A. Metabolomic analyses of the bio-corona formed on TiO2 nanoparticles incubated with plant leaf tissues. J. Nanobiotechnol. 18, 28 (2020).

    Article  CAS  Google Scholar 

  10. Santana, I., Wu, H., Hu, P. & Giraldo, J. P. Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11, 2045 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spielman-Sun, E. et al. Protein coating composition targets nanoparticles to leaf stomata and trichomes. Nanoscale 12, 3630–3636 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Law, S. S. Y. et al. Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nat. Commun. 13, 2417 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lowry, G. V. et al. Towards realizing nano-enabled precision delivery in plants. Nat. Nanotechnol. 19, 1255–1269 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Voke, E., Pinals, R. L., Goh, N. S. & Landry, M. P. In planta nanosensors: understanding biocorona formation for functional design. ACS Sens. 6, 2802–2814 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bing, J., Xiao, X., McClements, D. J., Biao, Y. & Chongjiang, C. Protein corona formation around inorganic nanoparticles: food plant proteins-TiO2 nanoparticle interactions. Food Hydrocoll. 115, 106594 (2021).

    Article  CAS  Google Scholar 

  16. Wong, M. H. et al. Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 16, 1161–1172 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Lew, T. T. S. et al. Rational design principles for the transport and subcellular distribution of nanomaterials into plant protoplasts. Small 14, e1802086 (2018).

  18. Hu, P. et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano 14, 7970–7986 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Avellan, A. et al. Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13, 5291–5305 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y. et al. Charge, aspect ratio, and plant species affect uptake efficiency and translocation of polymeric agrochemical nanocarriers. Environ. Sci. Technol. 57, 8269–8279 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeon, S.-J. et al. Targeted delivery of sucrose-coated nanocarriers with chemical cargoes to the plant vasculature enhances long-distance translocation. Small 20, e2304588 (2023).

  22. Wu, H., Tito, N. & Giraldo, J. P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11, 11283–11297 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Husted, S. et al. What is missing to advance foliar fertilization using nanotechnology? Trends Plant Sci. 28, 90–105 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Jeon, S.-J. et al. Electrostatics control nanoparticle interactions with model and native cell walls of plants and algae. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.3c05686 (2023).

    Article  PubMed  Google Scholar 

  25. Kim, K. et al. Sulfolipid density dictates the extent of carbon nanodot interaction with chloroplast membranes. Environ. Sci.: Nano 9, 2691–2703 (2022).

    CAS  Google Scholar 

  26. Zhu, L. et al. Cell wall pectin content refers to favored delivery of negatively charged carbon dots in leaf cells. ACS Nano 17, 23442–23454 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Dawson, K. A. & Yan, Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol. 16, 229–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Sharkey, T. D. The discovery of rubisco. J. Exp. Bot. 74, 510–519 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Giraldo, J. P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Swift, T. A. et al. Photosynthesis and crop productivity are enhanced by glucose-functionalised carbon dots. New Phytol. 229, 783–790 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Routier, C. et al. Chitosan-modified polyethyleneimine nanoparticles for enhancing the carboxylation reaction and plants’ CO2 uptake. ACS Nano 17, 3430–3441 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bashiri, G. et al. Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab Chip 23, 1432 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sales, C. R. G., da Silva, A. B. & Carmo-Silva, E. Measuring Rubisco activity: challenges and opportunities of NADH-linked microtiter plate-based and 14C-based assays. J. Exp. Bot. 71, 5302–5312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, J. X., Alom, M. S., Yadav, R. & Fitzkee, N. C. Predicting protein function and orientation on a gold nanoparticle surface using a residue-based affinity scale. Nat. Commun. 13, 7313 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wunder, T., Cheng, S. L. H., Lai, S.-K., Li, H.-Y. & Mueller-Cajar, O. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger. Nat. Commun. 9, 5076 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Poudel, S. et al. Biophysical analysis of the structural evolution of substrate specificity in RuBisCO. Proc. Natl Acad. Sci. USA 117, 30451–30457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Payne, C. K. A protein corona primer for physical chemists. J. Chem. Phys. 151, 130901 (2019).

    Article  PubMed  Google Scholar 

  38. Li, G. et al. Association of heat-induced conformational change with activity loss of Rubisco. Biochem. Biophys. Res. Commun. 290, 1128–1132 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kopac, T. Protein corona, understanding the nanoparticle-protein interactions and future perspectives: a critical review. Int. J. Biol. Macromol. 169, 290–301 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Botella, C., Jouhet, J. & Block, M. A. Importance of phosphatidylcholine on the chloroplast surface. Prog. Lipid Res. 65, 12–23 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Reszczyńska, E. & Hanaka, A. Lipids composition in plant membranes. Cell Biochem. Biophys. 78, 401–414 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Leibe, R. et al. Key role of choline head groups in large unilamellar phospholipid vesicles for the interaction with and rupture by silica nanoparticles. Small 19, e2207593 (2023).

    Article  PubMed  Google Scholar 

  43. Ganguly, S. & Margel, S. Bioimaging probes based on magneto-fluorescent nanoparticles. Pharmaceutics 15, 686 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoang, K. N. L., Wheeler, K. E. & Murphy, C. J. Isolation methods influence the protein corona composition on gold-coated iron oxide nanoparticles. Anal. Chem. 94, 4737–4746 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Pu, S., Gong, C. & Robertson, A. W. Liquid cell transmission electron microscopy and its applications. R. Soc. Open Sci. 7, 191204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmidt, R. et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12, 1478 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gasteiger, E. et al. in The Proteomics Protocols Handbook 571–607 (Humana Press, 2005).

  48. Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30, 1035–1040 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, Y. & Hernandez, R. Construction of multiscale dissipative particle dynamics (DPD) models from other coarse-grained models. ACS Omega 9, 17667–17680 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Deng, C. et al. Nanoscale iron (Fe3O4) surface charge controls Fusarium suppression and nutrient accumulation in tomato (Solanum lycopersicum L.). ACS Sustain. Chem. Eng. 12, 13285–13296 (2024).

    Article  CAS  Google Scholar 

  51. Wu, M. et al. Solution NMR analysis of ligand environment in quaternary ammonium-terminated self-assembled monolayers on gold nanoparticles: the effect of surface curvature and ligand structure. J. Am. Chem. Soc. 141, 4316–4327 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Mahajan, S. & Tang, T. Martini coarse-grained model for polyethylenimine. J. Comput. Chem. 40, 607–618 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under grant no. CHE-2001611, the NSF Center for Sustainable Nanotechnology. We acknowledge support from the UC President’s Pre-Professoriate Fellowship to C.C. We thank J. Arrington from the University of Illinois Urbana-Champaign for processing the raw proteomic data, and M. M. Dickinson from the Central Facility for Advanced Microscopy and Microanalysis at the University of California, Riverside, for the TEM analysis sample preparation. We also thank the UC Riverside Metabolomics Core for performing the metabolomics analysis. The computing resources necessary for this work were performed in part on Bridges at the Pittsburgh Supercomputing Center through allocation CTS090079 provided by the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS), which is supported by the National Science Foundation (NSF) grant nos. 2138259, 2138286, 2138307, 2137603 and 2138296. Additional computing resources were provided by the Advanced Research Computing at Hopkins (ARCH) high-performance computing (HPC) facilities.

Author information

Authors and Affiliations

Authors

Contributions

J.P.G. and C.C. conceived the idea, designed the experiments and performed the data analysis. S.-J.J. conducted the fluorescence imaging analysis to visualize the in vivo corona formation on NPs and performed the biocompatibility measurements. C.J.M. and K.N.L.H. contributed to the proteomic analysis and performed the in vitro RuBisCO activity measurements. C.A. performed the pH-dependent in vitro RuBisCO protein corona formation experiments. K.E.W. and C.A. performed and analysed the samples for circular dichroism. K.E.W. and E.S. contributed with the proteomic analysis support. J.C.W., C.D. and Yi Wang collected and analysed the TEM images. R.H., X.W. and Yinhan Wang performed the coarse-grained simulations and analysis. All authors contributed to the manuscript writing.

Corresponding author

Correspondence to Juan Pablo Giraldo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Renu Deswal, Yaning Luan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Methods, Results and References.

Reporting Summary

Supplementary Tables 1–19

Supplementary Tables 1–19.

Supplementary Source Data

Source data for supplementary figures.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Fig. 5

Source data for Fig. 5.

Source Data Fig. 6

Source data for Fig. 6.

Source Data Fig. 5

Unprocessed SDS-PAGE gels for Fig. 5a,b.

Source Data Fig. 6

Unprocessed SDS-PAGE gels for Fig. 6a–d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, C., Jeon, SJ., Hoang, K.N.L. et al. In vivo transformations of positively charged nanoparticles alter the formation and function of RuBisCO photosynthetic protein corona. Nat. Nanotechnol. (2025). https://doi.org/10.1038/s41565-025-01944-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-025-01944-x

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research