Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extreme-ultraviolet spatiotemporal vortices via high harmonic generation

Abstract

Spatiotemporal optical vortices (STOVs) are space–time structured light pulses with a unique topology that couples spatial and temporal domains and carry transverse orbital angular momentum (OAM). Up to now, their generation has been limited to the visible and infrared regions of the spectrum. During the last decade, it was shown that through the process of high-order harmonic generation, it is possible to upconvert spatial optical vortices that carry longitudinal OAM from the near-infrared into the extreme-ultraviolet (EUV), thereby producing vortices with distinct femtosecond and attosecond structure. In this work, we demonstrate theoretically and experimentally the generation of EUV spatiotemporal and spatiospectral vortices using near-infrared STOV driving laser pulses. We use analytical expressions for focused STOVs to perform macroscopic calculations of high-order harmonic generation that are directly compared to the experimental results. As STOV beams are not eigenmodes of propagation, we characterize the highly charged EUV STOVs in both the near and far fields to show that they represent conjugated spatiotemporal and spatiospectral vortex pairs. Our work provides high-frequency light beams topologically coupled at the nanometre/attosecond scales domains with transverse OAM that could be suitable to explore electronic dynamics in magnetic materials, chiral media and nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High-order spatiotemporal harmonic vortex generation setup.
Fig. 2: Simulation results for the generation of EUV high-harmonic STOVs and SSOVs.
Fig. 3: Influence of the inhomogeneity parameter in the generation of EUV STOVs given the same transverse OAM l0 = 1.
Fig. 4: Experimental generation of EUV high-harmonic STOVs.

Similar content being viewed by others

Data availability

The simulation dataset that supports the findings of this study is available online via figshare at https://doi.org/10.6084/m9.figshare.28714805 (ref. 67). The experimental data are available upon reasonable request.

Code availability

The simulation and data visualization codes to generate the plots and data analysis within this paper are available from the corresponding authors on reasonable request.

References

  1. Bliokh, K. Y. et al. Roadmap on structured waves. J. Opt. 25, 103001 (2023).

    Article  ADS  Google Scholar 

  2. Shen, Y. et al. Roadmap on spatiotemporal light fields. J. Opt. 25, 093001 (2023).

    Article  ADS  Google Scholar 

  3. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  4. Liu, K. et al. Super-resolution radar imaging based on experimental OAM beams. Appl. Phys. Lett. 110, 164102 (2017).

  5. Nicolas, A. et al. A quantum memory for orbital angular momentum photonic qubits. Nat. Photonics 8, 234–238 (2014).

    Article  ADS  Google Scholar 

  6. Zhou, Z.-Y. et al. Orbital angular momentum photonic quantum interface. Light Sci. Appl. 5, e16019 (2016).

    Article  Google Scholar 

  7. Wang, B. et al. Coherent Fourier scatterometry using orbital angular momentum beams for defect detection. Opt. Express 29, 3342–3358 (2021).

    Article  ADS  Google Scholar 

  8. Vanacore, G. M. et al. Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat. Mater. 18, 573–579 (2019).

    Article  ADS  Google Scholar 

  9. Sukhorukov, A. P. & Yangirova, V. V. Spatio-temporal vortices: properties, generation and recording. In Proc. Congress on Optics and Optoelectronics (eds Karpierz, M. A. et al.) 35–43 (SPIE, 2005).

  10. Bliokh, K. Y. & Nori, F. Spatiotemporal vortex beams and angular momentum. Phys. Rev. A 86, 033824 (2012).

    Article  ADS  Google Scholar 

  11. Jhajj, N. et al. Spatiotemporal optical vortices. Phys. Rev. 6, 031037 (2016).

    Article  Google Scholar 

  12. Hancock, S. W., Zahedpour, S., Goffin, A. & Milchberg, H. M. Free-space propagation of spatiotemporal optical vortices. Optica 6, 1547–1553 (2019).

    Article  ADS  Google Scholar 

  13. Chong, A., Wan, C., Chen, J. & Zhan, Q. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics 14, 350–354 (2020).

    Article  ADS  Google Scholar 

  14. Huang, S. et al. Spatiotemporal vortex strings. Sci. Adv. 10, eadn6206 (2024).

    Article  Google Scholar 

  15. Wang, H., Guo, C., Jin, W., Song, A. Y. & Fan, S. Engineering arbitrarily oriented spatiotemporal optical vortices using transmission nodal lines. Optica 8, 966–971 (2021).

    Article  ADS  Google Scholar 

  16. Huang, J., Zhang, H., Wu, B., Zhu, T. & Ruan, Z. Topologically protected generation of spatiotemporal optical vortices with nonlocal spatial mirror symmetry breaking metasurface. Phys. Rev. B 108, 104106 (2023).

    Article  ADS  Google Scholar 

  17. Huo, P. et al. Observation of spatiotemporal optical vortices enabled by symmetry-breaking slanted nanograting. Nat. Commun. 15, 3055 (2024).

    Article  ADS  Google Scholar 

  18. Chen, J. et al. Automated close-loop system for three-dimensional characterization of spatiotemporal optical vortex. Front. Phys. 9, 633922 (2021).

  19. Gui, G. et al. Single-frame characterization of ultrafast pulses with spatiotemporal orbital angular momentum. ACS Photonics 9, 2802–2808 (2022).

    Article  Google Scholar 

  20. Huang, S., Wang, P., Shen, X. & Liu, J. Properties of the generation and propagation of spatiotemporal optical vortices. Opt. Express 29, 26995–27003 (2021).

    Article  ADS  Google Scholar 

  21. Huang, S., Wang, P., Shen, X., Liu, J. & Li, R. Diffraction properties of light with transverse orbital angular momentum. Optica 9, 469–472 (2022).

    Article  ADS  Google Scholar 

  22. Porras, M. A. & Jolly, S. W. Control of vortex orientation of ultrashort optical pulses using a spatial chirp. Opt. Lett. 48, 6448–6451 (2023).

    Article  ADS  Google Scholar 

  23. Porras, M. A. Propagation of higher-order spatiotemporal vortices. Opt. Lett. 48, 367–370 (2023).

    Article  ADS  Google Scholar 

  24. Porras, M. A. Transverse orbital angular momentum of spatiotemporal optical vortices. Prog. Electromagn. Res. 177, 95–105 (2023).

    Article  Google Scholar 

  25. Chen, J., Yu, L., Wan, C. & Zhan, Q. Spin–orbit coupling within tightly focused circularly polarized spatiotemporal vortex wavepacket. ACS Photonics 9, 793–799 (2022).

    Article  Google Scholar 

  26. Gui, G., Brooks, N. J., Kapteyn, H. C., Murnane, M. M. & Liao, C.-T. Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light. Nat. Photonics 15, 608–613 (2021).

    Article  ADS  Google Scholar 

  27. Hancock, S., Zahedpour, S. & Milchberg, H. Second-harmonic generation of spatiotemporal optical vortices and conservation of orbital angular momentum. Optica 8, 594–597 (2021).

    Article  ADS  Google Scholar 

  28. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595 (1987).

    Article  ADS  Google Scholar 

  29. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Article  Google Scholar 

  30. Schafer, K. J., Yang, B., Dimauro, L. F. & Kulander, K. C. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    Article  ADS  Google Scholar 

  31. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  32. Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998).

    Article  ADS  Google Scholar 

  33. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  34. Hernández-García, C., Picón, A., San Román, J. & Plaja, L. Attosecond extreme ultraviolet vortices from high-order harmonic generation. Phys. Rev. Lett. 111, 083602 (2013).

    Article  ADS  Google Scholar 

  35. Gariepy, G. et al. Creating high-harmonic beams with controlled orbital angular momentum. Phys. Rev. Lett. 113, 153901 (2014).

    Article  ADS  Google Scholar 

  36. Géneaux, R. et al. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet. Nat. Commun. 7, 12583 (2016).

    Article  ADS  Google Scholar 

  37. Hernández-García, C. et al. Extreme ultraviolet vector beams driven by infrared lasers. Optica 4, 520–526 (2017).

    Article  ADS  Google Scholar 

  38. Dorney, K. M. et al. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nat. Photonics 13, 123–130 (2019).

    Article  ADS  Google Scholar 

  39. Kong, F. et al. Controlling the orbital angular momentum of high harmonic vortices. Nat. Commun. 8, 14970 (2017).

    Article  ADS  Google Scholar 

  40. Gauthier, D. et al. Tunable orbital angular momentum in high-harmonic generation. Nat. Commun. 8, 14971 (2017).

    Article  ADS  Google Scholar 

  41. Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364, eaaw9486-10 (2019).

    Article  ADS  Google Scholar 

  42. de las Heras, A., San Román, J., Serrano, J., Plaja, L. & Hernández-García, C. Circularly polarized high-harmonic beams carrying self-torque or time-dependent orbital angular momentum. ACS Photonics 11, 4365–4373 (2024).

    Google Scholar 

  43. Rego, L. et al. Necklace-structured high-harmonic generation for low-divergence, soft x-ray harmonic combs with tunable line spacing. Sci. Adv. 8, eabj7380 (2022).

    Article  ADS  Google Scholar 

  44. Heras de las et al. Attosecond vortex pulse trains. Optica 11, 1085–1093 (2024).

    Article  Google Scholar 

  45. Wang, B. et al. High-fidelity ptychographic imaging of highly periodic structures enabled by vortex high harmonic beams. Optica 10, 1245–1252 (2023).

    Article  ADS  Google Scholar 

  46. Vincenti, H. & Quéré, F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys. Rev. Lett. 108, 113904 (2012).

    Article  ADS  Google Scholar 

  47. Wheeler, J. A. et al. Attosecond lighthouses from plasma mirrors. Nat. Photonics 6, 829–833 (2012).

    Article  ADS  Google Scholar 

  48. Kim, K. T. et al. Photonic streaking of attosecond pulse trains. Nat. Photonics 7, 651–656 (2013).

    Article  ADS  Google Scholar 

  49. Hammond, T. J., Brown, G. G., Kim, K. T., Villeneuve, D. M. & Corkum, P. B. Attosecond pulses measured from the attosecond lighthouse. Nat. Photonics 10, 171–175 (2016).

    Article  ADS  Google Scholar 

  50. Louisy, M. et al. Gating attosecond pulses in a noncollinear geometry. Optica 2, 563–566 (2015).

    Article  ADS  Google Scholar 

  51. Zhu, G., Howe van, J., Durst, M., Zipfel, W. & Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13, 2153–2159 (2005).

    Article  ADS  Google Scholar 

  52. Hernández-García, C., Jaron-Becker, A., Hickstein, D. D., Becker, A. & Durfee, C. G. High-order-harmonic generation driven by pulses with angular spatial chirp. Phys. Rev. A 93, 023825 (2016).

    Article  ADS  Google Scholar 

  53. Fang, Y., Lu, S. & Liu, Y. Controlling photon transverse orbital angular momentum in high harmonic generation. Phys. Rev. Lett. 127, 273901 (2021).

    Article  ADS  Google Scholar 

  54. Rui, G. et al. Numerical modeling for the characteristics study of a focusing ultrashort spatiotemporal optical vortex. Opt. Express 30, 37314–37322 (2022).

    Article  ADS  Google Scholar 

  55. Porras, M. A. & Jolly, S. W. Procedure for imparting transverse orbital angular momentum by focusing spatiotemporally coupled ultrashort pulses. Phys. Rev. A 109, 033514 (2024).

    Article  ADS  Google Scholar 

  56. L’Huillier, A., Balcou, P., Candel, S., Schafer, K. J. & Kulander, K. C. Calculations of high-order harmonic-generation processes in xenon at 1064 nm. Phys. Rev. A 46, 2778–2790 (1992).

    Article  ADS  Google Scholar 

  57. Hernández-García, C., Román, J. S., Plaja, L. & Picón, A. Quantum-path signatures in attosecond helical beams driven by optical vortices. New J. Phys. 17, 093029 (2015).

    Article  ADS  Google Scholar 

  58. Guo, C. et al. Phase control of attosecond pulses in a train. J. Phys. B 51, 034006 (2018).

    Article  ADS  Google Scholar 

  59. Lewenstein, M., Salières, P. & L’Huillier, A. Phase of the atomic polarization in high-order harmonic generation. Phys. Rev. A 52, 4747–4754 (1995).

    Article  ADS  Google Scholar 

  60. Heras et al. Extreme-ultraviolet vector-vortex beams from high harmonic generation. Optica 9, 71–79 (2022).

    Article  ADS  Google Scholar 

  61. Hernández-García, C. et al. High-order harmonic propagation in gases within the discrete dipole approximation. Phys. Rev. A 82, 1–11 (2010).

    Article  Google Scholar 

  62. Chen, W. et al. Time diffraction-free transverse orbital angular momentum beams. Nat. Commun. 13, 4021 (2022).

    Article  ADS  Google Scholar 

  63. Gardner, D. F. et al. Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source. Nat. Photonics 11, 259–263 (2017).

    Article  ADS  Google Scholar 

  64. Fan, T. et al. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism. Proc. Natl Acad. Sci. 112, 14206–14211 (2015).

    Article  ADS  Google Scholar 

  65. Lambert, G. et al. Towards enabling femtosecond helicity-dependent spectroscopy with high-harmonic sources. Nat. Commun. 6, 6167 (2015).

    Article  ADS  Google Scholar 

  66. Fanciulli, M. et al. Observation of magnetic helicoidal dichroism with extreme ultraviolet light vortices. Phys. Rev. Lett. 128, 077401 (2022).

    Article  ADS  Google Scholar 

  67. Martín-Hernandez, R. et al. Simulation dataset for ‘Extreme-ultraviolet spatiotemporal vortices via high harmonic generation’. figshare https://doi.org/10.6084/m9.figshare.28714805 (2025).

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 851201). C.H.-G. and L.P. acknowledge funding from Ministerio de Ciencia e Innovación (grant no. PID2022-142340NB-I00) and Junta de Castilla y León and Fondo Europeo de Desarrollo Regional (FEDER), under grant no. SA108P24. Financial support of the Department of Education of the Junta de Castilla y León and FEDER Funds is gratefully acknowledged (Escalera de Excelencia grant no. CLU-2023-1-02). C.-T.L. acknowledges support from AFOSR YIP (grant no. FA9550-23-1-0234) and partial support by DOE BER (grant no. DE-SC0023314). M.A.P. acknowledges funding from Ministerio de Ciencia e Innovación (grant no. PID2021-122711NB-C21). M.M.M. and H.C.K. gratefully acknowledge support from the Department of Energy Basic Energy Sciences grant no. DE-FG02-99ER14982 for the experiments, which were done at JILA, and the US National Science Foundation through JILA Physics Frontiers Center grant no. PHY-2317149 for the experimental facilities. R.M.-H., L.P. and C.H.-G. thankfully acknowledge RES resources provided by BSC in MareNostrum 5, and CESGA in Finisterrae3 to grant nos. FI-2024-2-0010 and FI-2024-3-0035.

Author information

Authors and Affiliations

Authors

Contributions

C.H.-G., M.A.P., C.-T.L. and M.M.M. conceived the project. R.M.-H, M.A.P. and C.H.-G. performed the theoretical derivations and simulations and analysed the resulting data. G.G. conducted the experiment and analysed the experimental data. C.-T.L., M.M.M. and H.C.K. supervised the experiment. C.H.-G., M.A.P. and L.P. supervised the theoretical simulations. All authors wrote and prepared the manuscript.

Corresponding authors

Correspondence to Rodrigo Martín-Hernández or Chen-Ting Liao.

Ethics declarations

Competing interests

H.C.K. has a co-affiliation as CTO of KMLabs Inc. M.M.M. and H.C.K. have a financial interest in KMLabs. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Qiwen Zhan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information sections S1–S3 and Figs. 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Hernández, R., Gui, G., Plaja, L. et al. Extreme-ultraviolet spatiotemporal vortices via high harmonic generation. Nat. Photon. (2025). https://doi.org/10.1038/s41566-025-01699-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-025-01699-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing