Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solvent-assisted reaction for spontaneous defect passivation in perovskite solar cells

Abstract

Perovskite solar cells have developed rapidly in the past decade. For fabricating highly efficient perovskite solar cells, efforts have been devoted to modulate the nucleation and crystallization processes of perovskite active layers by solvent, antisolvent and additive engineering. However, there is still a need for effective strategies to regulate perovskite nucleation and crystal growth and passivating in situ defects on the surface and at the grain boundaries. Here we introduce 1,4-butane sultone as the second solvent into the perovskite precursor solution to regulate the nucleation of the α-FAPbI3 layer. The interaction between 1,4-butane sultone and the solute decreases the density of nucleation and inhibits secondary nucleation. At the same time, the ring-opening conversion of 1,4-butane sultone during the annealing process produces 4-chlorobutane-1-sulfonate and 4-iodobutane-1-sulfonate, which effectively passivate the surface defects in the perovskite. As a result, treated n–i–p planar perovskite solar cells attain a power conversion efficiency of 26.5% (certified as 26.2%), with enhanced long-term stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular interaction and modulation in nucleation process.
Fig. 2: Halide-ion-induced ring-opening reaction.
Fig. 3: Halide-ion-induced ring-opening reaction of BuSO for spontaneous defect passivation.
Fig. 4: Photovoltaic performance and stability of pero-SCs.

Similar content being viewed by others

Data availability

All data are available in the Article or its Supplementary Information, and further data are also available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  Google Scholar 

  2. Zhao, K. et al. peri-Fused polyaromatic molecular contacts for perovskite solar cells. Nature 632, 301–306 (2024).

    Article  ADS  Google Scholar 

  3. Li, S. et al. Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635, 874–881 (2024).

    Article  Google Scholar 

  4. Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article  Google Scholar 

  5. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article  ADS  Google Scholar 

  6. Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article  ADS  Google Scholar 

  7. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article  ADS  Google Scholar 

  8. Yang, Y. et al. Amidination of ligands for chemical and field-effect passivation stabilizes perovskite solar cells. Science 386, 898–902 (2024).

    Article  Google Scholar 

  9. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

    Article  Google Scholar 

  10. Zhang, W. C. & Zhou, H. Q. Perovskite intermediate phases fundamentally address the urgent stability issue. Chem 7, 2862–2865 (2021).

    Article  Google Scholar 

  11. Zhao, X., Liu, T. & Loo, Y. L. Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities. Adv. Mater. 34, 2105849 (2022).

    Article  Google Scholar 

  12. Shao, J. et al. Recent progress in perovskite solar cells: material science. Sci. China Chem. 66, 10–64 (2023).

    Article  Google Scholar 

  13. Luo, X. et al. Recent progress in perovskite solar cells: from device to commercialization. Sci. China Chem. 65, 2369–2416 (2022).

    Article  Google Scholar 

  14. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  ADS  Google Scholar 

  15. Bu, T. et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372, 1327–1332 (2021).

    Article  ADS  Google Scholar 

  16. Jeon, N. J. et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).

    Article  ADS  Google Scholar 

  17. Yang, M. J. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017).

    Article  ADS  Google Scholar 

  18. Lee, J. W. et al. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317–6324 (2018).

    Article  Google Scholar 

  19. Bu, T. et al. Modulating crystal growth of formamidinium–caesium perovskites for over 200 cm2 photovoltaic sub-modules. Nat. Energy 7, 528–536 (2022).

    Article  ADS  Google Scholar 

  20. Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    Article  ADS  Google Scholar 

  21. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    Article  ADS  Google Scholar 

  22. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  ADS  Google Scholar 

  23. Zhang, H. et al. A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics. Nat. Commun. 13, 89 (2022).

    Article  ADS  Google Scholar 

  24. Zhang, Z. F. et al. DMSO-free solvent strategy for stable and efficient methylammonium-free Sn-Pb alloyed perovskite solar cells. Adv. Energy Mater. 13, 2300181 (2023).

    Article  Google Scholar 

  25. Li, M. et al. Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells. Nat. Commun. 14, 573 (2023).

    Article  ADS  Google Scholar 

  26. Claridge, T. D. W. High-Resolution NMR Techniques in Organic Chemistry 3rd edn (Elsevier, 2016).

  27. Huang, H. H. et al. A simple one-step method with wide processing window for high-quality perovskite mini-module fabrication. Joule 5, 958–974 (2021).

    Article  Google Scholar 

  28. Schötz, K. et al. Understanding differences in the crystallization kinetics between one‐step slot‐die coating and spin coating of MAPbI3 using multimodal in situ optical spectroscopy. Adv. Opt. Mater. 9, 2101161 (2021).

    Article  Google Scholar 

  29. Song, T.-B. et al. Revealing the dynamics of hybrid metal halide perovskite formation via multimodal in situ probes. Adv. Funct. Mater. 30, 1908337 (2020).

    Article  Google Scholar 

  30. Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).

    Article  ADS  Google Scholar 

  31. Zhao, Y. et al. Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 9, 1607 (2018).

    Article  ADS  Google Scholar 

  32. Ummadisingu, A. et al. The effect of illumination on the formation of metal halide perovskite films. Nature 545, 208–212 (2017).

    Article  ADS  Google Scholar 

  33. Abdelsamie, M. et al. Additive-assisted room-temperature processing of metal halide perovskite thin films. ACS Appl. Mater. Interfaces 13, 13212–13225 (2021).

    Article  Google Scholar 

  34. Parrott, E. S. et al. Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI3 films. Nanoscale 11, 14276–14284 (2019).

    Article  Google Scholar 

  35. Muhammad, Z. et al. Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(I1–xBrx)3 alloy. Phys. Chem. Chem. Phys. 22, 11943–11955 (2020).

    Article  Google Scholar 

  36. Han, Q. et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016).

    Article  Google Scholar 

  37. Zhang, Y. et al. Propylammonium chloride additive for efficient and stable FaPbI3 perovskite solar cells. Adv. Energy Mater. 11, 2102538 (2021).

    Article  Google Scholar 

  38. Liu, M. et al. Localized oxidation embellishing strategy enables high‐performance perovskite solar cells. Angew. Chem. Int. Ed. 63, e202318621 (2024).

    Article  Google Scholar 

  39. Paape, N. et al. Chloroalkylsulfonate ionic liquids by ring opening of sultones with organic chloride salts. Chem. Commun. 3867–3869 (2008).

  40. Padma priya, M. P. & Rajarajeswari, G. R. Bronsted acid-functionalized choline chloride-butane sultone for the catalytic decomposition of cumene hydroperoxide to phenol. J. Chem. Sci. 130, 36 (2018).

    Article  Google Scholar 

  41. Xing, Z. et al. Modulation of colloidal assembly behavior enables printable low-dimensional perovskite photovoltaics. Angew. Chem. Int. Ed. 62, e202303177 (2023).

    Article  Google Scholar 

  42. Peng, L. & Xie, W. Theoretical and experimental investigations on the bulk photovoltaic effect in lead-free perovskites MASnI3 and FASnI3. RSC Adv. 10, 14679–14688 (2020).

    Article  ADS  Google Scholar 

  43. Zhou, W. R. et al. Zwitterion coordination induced highly orientational order of CH3NH3PbI3 perovskite film delivers a high open circuit voltage exceeding 1.2 V. Adv. Funct. Mater. 29, 1901026 (2019).

    Article  Google Scholar 

  44. Liu, K. et al. Zwitterionic-surfactant-assisted room-temperature coating of efficient perovskite solar cells. Joule 4, 2404–2425 (2020).

    Article  Google Scholar 

  45. Chen, Y. H. & Zhou, H. P. Defects chemistry in high-efficiency and stable perovskite solar cells. J. Appl. Phys. 128, 060903 (2020).

    Article  ADS  Google Scholar 

  46. Zheng, X. P. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).

    Article  ADS  Google Scholar 

  47. Yang, T. et al. One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 14, 839 (2023).

    Article  ADS  Google Scholar 

  48. Zou, Y. et al. A crystal capping layer for formation of black-phase FAPbI3 perovskite in humid air. Science 385, 161–167 (2024).

    Article  Google Scholar 

  49. You, S. et al. Bifunctional hole-shuttle molecule for improved interfacial energy level alignment and defect passivation in perovskite solar cells. Nat. Energy 8, 515–525 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (no. 2024YFB4205200), the Strategic Priority Research Program of the Chinese Academy of Sciences via grant no. XDB 0520102 and the National Natural Science Foundation of China (nos. 52173188 and 52103243). Y.W. thanks Shenzhen HUASUAN Technology for assistance with the DFT calculations.

Author information

Authors and Affiliations

Authors

Contributions

L.M. conceived the idea, designed the experiments, analysed the data and co-wrote the paper. Y.W. performed the fabrication, measurement and analysis of the devices. C.L., M.C.L., C.Z. and Z.L. participated in the solar cell fabrication and characterization. S.Q. analysed the DFT data. J.Z. and M.R.L. performed the in situ PL measurements. Y.Z. and F.W. performed the TOF-SIMS measurements and analysed the data. X.L. analysed the NMR data. L.M. and Y.L. supervised the project. L.M., Y.W. and Y.L. wrote the paper. All authors contributed to the work.

Corresponding authors

Correspondence to Lei Meng or Yongfang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Guojia Fang, Rui Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25 and Tables 1–4.

Reporting Summary

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lu, C., Liu, M. et al. Solvent-assisted reaction for spontaneous defect passivation in perovskite solar cells. Nat. Photon. (2025). https://doi.org/10.1038/s41566-025-01704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-025-01704-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing