Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anyonic braiding in a chiral Mach–Zehnder interferometer

Abstract

Fractional quantum statistics are the defining characteristic of anyons. Measuring the phase generated by an exchange of anyons is challenging, as standard interferometry set-ups—such as the Fabry–Pérot interferometer—suffer from charging effects that obscure the interference signal. Here we present the observation of anyonic interference and exchange phases in an optical-like Mach–Zehnder interferometer based on co-propagating interface modes. By avoiding backscattering and deleterious charging effects, this set-up enables pristine and robust Aharonov–Bohm interference without any phase slips. At various fractional filling factors, the observed flux periodicities agree with the fundamental fractionally charged excitations that correspond to Jain states and depend only on the bulk topological order. To probe the anyonic statistics, we used a small, charged top gate in the interferometer bulk to induce localized quasiparticles without modifying the Aharonov–Bohm phase. The added quasiparticles introduce periodic phase slips. The sign and magnitude of the observed phase slips align with the expected value at filling 1/3, but their direction shows systematic deviations at fillings 2/5 and 3/7. Control over added individual quasiparticles in this design is essential for measuring the coveted non-abelian statistics in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OMZI and FPI.
Fig. 2: AB pajamas plots of co-propagating edge modes in an OMZI.
Fig. 3: AB pajamas with magnetic field excitations of local QPs.
Fig. 4: Local excitation of QPs by activating VTG at the local anti-dot TG.

Similar content being viewed by others

Data availability

Source data are provided with this paper. These data are also publicly available via Zenodo at https://doi.org/10.5281/zenodo.15394075(ref. 42).

References

  1. Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Article  ADS  Google Scholar 

  2. de-Picciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

    Article  ADS  Google Scholar 

  3. Reznikov, M., de Picciotto, R., Griffiths, T. G., Heiblum, M. & Umansky, V. Observation of quasiparticles with one-fifth of an electron’s charge. Nature 399, 238–241 (1999).

    Article  ADS  Google Scholar 

  4. Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997).

    Article  ADS  Google Scholar 

  5. Wilczek, F. Magnetic-flux, angular-momentum, and statistics. Phys. Rev. Lett. 48, 1144–1146 (1982).

    Article  ADS  Google Scholar 

  6. Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    Article  ADS  Google Scholar 

  7. Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583–1586 (1984).

    Article  ADS  Google Scholar 

  8. Leinaas, J. M. & Myrheim, J. in Fractional Statistics and Anyon Superconductivity (ed. Wilczek, F.) 132–156 (World Scientific, 1990).

  9. Stern, A. Anyons and the quantum Hall effect – a pedagogical review. Ann. Phys. 323, 204–249 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  10. Chamon, C. D. C., Freed, D. E., Kivelson, S. A., Sondhi, S. L. & Wen, X. G. Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331–2343 (1997).

    Article  ADS  Google Scholar 

  11. Lee, J.-Y. M. et al. Partitioning of diluted anyons reveals their braiding statistics. Nature 617, 277–281 (2023).

    Article  ADS  Google Scholar 

  12. Han, C., Park, J., Gefen, Y. & Sim, H. S. Topological vacuum bubbles by anyon braiding. Nat. Commun. 7, 11131 (2016).

    Article  ADS  Google Scholar 

  13. Jeon, G. S., Graham, K. L. & Jain, J. K. Berry phases for composite fermions: effective magnetic field and fractional statistics. Phys. Rev. B 70, 125316 (2004).

    Article  ADS  Google Scholar 

  14. Jain, J. K., Kivelson, S. A. & Thouless, D. J. Proposed measurement of an effective flux quantum in the fractional quantum Hall effect. Phys. Rev. Lett. 71, 3003–3006 (1993).

    Article  ADS  Google Scholar 

  15. Ofek, N. et al. Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proc. Natl Acad. Sci. USA 107, 5276–5281 (2010).

    Article  ADS  Google Scholar 

  16. Zhang, Y. M. et al. Distinct signatures for Coulomb blockade and Aharonov-Bohm interference in electronic Fabry-Perot interferometers. Phys. Rev. B 79, 241304 (2009).

    Article  ADS  Google Scholar 

  17. Schuster, R. et al. Phase measurement in a quantum dot via a double-slit interference experiment. Nature 385, 417–420 (1997).

    Article  ADS  Google Scholar 

  18. Rosenow, B. & Simon, S. H. Telegraph noise and the Fabry-Perot quantum Hall interferometer. Phys. Rev. B 85, 201302 (2012).

    Article  ADS  Google Scholar 

  19. Levkivskyi, I. P., Fröhlich, J. & Sukhorukov, E. V. Theory of fractional quantum Hall interferometers. Phys. Rev. B 86, 245105 (2012).

    Article  ADS  Google Scholar 

  20. Ji, Y. et al. An electronic Mach–Zehnder interferometer. Nature 422, 415–418 (2003).

    Article  ADS  Google Scholar 

  21. Neder, I., Heiblum, M., Levinson, Y., Mahalu, D. & Umansky, V. Unexpected behavior in a two-path electron interferometer. Phys. Rev. Lett. 96, 016804 (2006).

    Article  ADS  Google Scholar 

  22. Neder, I. et al. Interference between two indistinguishable electrons from independent sources. Nature 448, 333–337 (2007).

    Article  ADS  Google Scholar 

  23. Halperin, B. I., Stern, A., Neder, I. & Rosenow, B. Theory of the Fabry-Perot quantum Hall interferometer. Phys. Rev. B 83, 155440 (2011).

    Article  ADS  Google Scholar 

  24. Nakamura, J. et al. Aharonov–Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15, 563–569 (2019).

    Article  Google Scholar 

  25. Sivan, I. et al. Observation of interaction-induced modulations of a quantum Hall liquid’s area. Nat. Commun. 7, 12184 (2016).

    Article  ADS  Google Scholar 

  26. Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article  Google Scholar 

  27. Kim, J. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. 19, 1619–1626 (2024).

    Article  Google Scholar 

  28. Samuelson, N. L. et al. Anyonic statistics and slow quasiparticle dynamics in a graphene fractional quantum Hall interferometer. Preprint at arxiv.org/abs/2403.19628 (2024).

  29. Werkmeister, T. et al. Anyon braiding and telegraph noise in a graphene interferometer. Science 388, 730–735 (2025).

  30. Byers, N. & Yang, C. N. Theoretical considerations concerning quantized magnetic flux in superconducting cylinders. Phys. Rev. Lett. 7, 46 (1961).

    Article  ADS  Google Scholar 

  31. Kivelson, S. Semiclassical theory of localized many-anyon states. Phys. Rev. Lett. 65, 3369–3372 (1990).

    Article  ADS  Google Scholar 

  32. Feldman, D. E., Gefen, Y., Kitaev, A., Law, K. T. & Stern, A. Shot noise in an anyonic Mach-Zehnder interferometer. Phys. Rev. B 76, 085333 (2007).

    Article  ADS  Google Scholar 

  33. Law, K. T., Feldman, D. E. & Gefen, Y. Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 045319 (2006).

    Article  ADS  Google Scholar 

  34. Kundu, H. K., Biswas, S., Ofek, N., Umansky, V. & Heiblum, M. Anyonic interference and braiding phase in a Mach-Zehnder interferometer. Nat. Phys. 19, 515–521 (2023).

    Article  Google Scholar 

  35. Giovannetti, V., Taddei, F., Frustaglia, D. & Fazio, R. Multichannel architecture for electronic quantum Hall interferometry. Phys. Rev. B 77, 155320 (2008).

    Article  ADS  Google Scholar 

  36. Deviatov, E. V., Egorov, S. V., Biasiol, G. & Sorba, L. Quantum Hall Mach-Zehnder interferometer at fractional filling factors. Europhys. Lett. 100, 67009 (2012).

    Article  ADS  Google Scholar 

  37. Batra, N., Wei, Z., Vishveshwara, S. & Feldman, D. E. Anyonic Mach-Zehnder interferometer on a single edge of a two-dimensional electron gas. Phys. Rev. B 108, L241302 (2023).

    Article  ADS  Google Scholar 

  38. Biswas, S., Kundu, H. K., Umansky, V. & Heiblum, M. Electron pairing of interfering interface-based edge modes. Phys. Rev. Lett. 131, 096302 (2023).

    Article  ADS  Google Scholar 

  39. Jeon, G. S., Graham, K. L. & Jain, J. K. Fractional statistics in the fractional quantum Hall effect. Phys. Rev. Lett. 91, 036801 (2003).

    Article  ADS  Google Scholar 

  40. Su, W. P. Statistics of the fractionally charged excitations in the quantum Hall effect. Phys. Rev. B 34, 1031–1033 (1986).

    Article  ADS  Google Scholar 

  41. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  42. Ghosh, B. Anyonic braiding in a chiral Mach-Zehnder interferometer. Zenodo https://doi.org/10.5281/zenodo.15394075 (2025).

Download references

Acknowledgements

M.H. thanks D. E. Feldman for fruitful discussions and M. Banerjee for her suggestions. B.G and M.L thanks A. K. Paul, H. K. Kundu and S. Biswas for the helpful comments that improved our device. B.G. and M.L. thank A. Gupta for help with the statistical phase analysis. D.F.M. acknowledges many illuminating conversations on quantum Hall interferometry with Y. Ronen. D.F.M. was supported by the Israel Science Foundation (grant no. 2572/21) and by the Deutsche Forschungsgemeinschaft within the CRC network TR 183 (project grant no. 277101999). M.H. acknowledges the support of the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 833078). M.L. thanks the Ariane de Rothschild Women Doctoral Program for their support.

Author information

Authors and Affiliations

Authors

Contributions

B.G. fabricated the devices. B.G. and M.L. performed the measurements and analysed the data with input from M.H. L.M. characterized the devices at the initial stage of the experiment. M.H. supervised the experimental design, execution and data analysis. D.F.M. worked on the theoretical aspects and data analysis. V.U. grew the GaAs heterostructures. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Moty Heiblum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Tables 1 and 2 and Discussion.

Source data

Source Data Figs. 1, 2, 3 and 4

Source Data Fig. 1 Raw data for Fig. 1d. Source Data Fig. 2 Raw data without background subtraction. Source Data Fig. 3 Raw data for each panel without background subtraction. Source Data Fig. 4 Raw data for each panel without background subtraction. Figure 4b,d were obtained from line cuts of Fig. 4a,c so source data are not provided.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, B., Labendik, M., Musina, L. et al. Anyonic braiding in a chiral Mach–Zehnder interferometer. Nat. Phys. (2025). https://doi.org/10.1038/s41567-025-02960-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-025-02960-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing