Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The steatotic liver disease burden paradox: unravelling the key role of alcohol

Subjects

Abstract

The classification of steatotic liver disease (SLD) has evolved, incorporating all conditions characterized by hepatic lipid accumulation. SLD represents a continuum of disorders that are shaped by the dynamic factors of alcohol intake and cardiometabolic risk factors. This updated classification has profound implications for both the management and research of SLD, especially with the new distinct category of patients with both metabolic and alcohol-related liver disease. In this Perspective, we highlight the pivotal role of alcohol within the SLD framework. We introduce the ‘SLD burden paradox’: a concept illustrating the disparity in which metabolic dysfunction-associated steatotic liver disease is more prevalent, yet individuals with SLD and excessive alcohol intake (such as in metabolic and alcohol-related liver disease and in alcohol-related liver disease) account for greater global liver-related morbidity and mortality. We explore strategies to mitigate the effect of SLD on morbidity and mortality, emphasizing the importance of early detection and reducing stigma associated with alcohol intake. Our discussion extends to methods for assessing and monitoring alcohol intake together with the critical role of managing cardiometabolic risk factors in patients across the SLD spectrum. Conclusively, we advocate for a coordinated care framework that adopts a person-centric approach when managing SLD, aiming to improve outcomes and patient care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Historic acknowledgement of disease drivers in steatotic liver disease and disease definitions.
Fig. 2: Steatotic liver disease burden paradox.
Fig. 3: Natural history of patients in the steatotic liver disease spectrum.
Fig. 4: The bidirectional linking of factors that predispose to steatotic liver disease.
Fig. 5: Focus of treatment for patients with steatotic liver disease and an excessive alcohol intake.
Fig. 6: Treatment targets and potential disease modifiers in patients with steatotic liver disease and excessive alcohol intake.

Similar content being viewed by others

Data availability

Prevalence and liver-related mortality estimates referred to in Fig. 2 are from previous works5,6,7,8,11,12,13. Figure 3 is adapted with permission from Thiele et al.99.

References

  1. Rinella, M. E. et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 79, 1542–1556 (2023).

    Article  CAS  PubMed  Google Scholar 

  2. Ludwig, J., Viggiano, T. R., Mcgill, D. B. & Oh, B. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc. 55, 434–438 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Israelsen, M., Torp, N., Johansen, S., Thiele, M. & Krag, A. MetALD: new opportunities to understand the role of alcohol in steatotic liver disease. Lancet Gastroenterol. Hepatol. 8, 866–868 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Åberg, F., Byrne, C. D., Pirola, C. J., Männistö, V. & Sookoian, S. Alcohol consumption and metabolic syndrome: clinical and epidemiological impact on liver disease. J. Hepatol. 78, 191–206 (2023).

    Article  PubMed  Google Scholar 

  5. Younossi, Z. M. et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 77, 1335–1347 (2023).

    Article  PubMed  Google Scholar 

  6. Amonker, S., Houshmand, A., Hinkson, A., Rowe, I. & Parker, R. Prevalence of alcohol-associated liver disease: a systematic review and meta-analysis. Hepatol. Commun. 7, e0133 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schneider, C. V. et al. Prevalence of at‐risk MASH, MetALD and alcohol‐associated steatotic liver disease in the general population. Aliment. Pharmacol. Ther. 59, 1271–1281 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, C.-m et al. Prevalence, distribution, and hepatic fibrosis burden of the different subtypes of steatotic liver disease in primary care settings. Hepatology 79, 1393–1400 (2024).

    Article  PubMed  Google Scholar 

  9. Kalligeros, M. et al. Prevalence of steatotic liver disease (MASLD, MetALD, and ALD) in the United States: NHANES 2017–2020. Clin. Gastroenterol. Hepatol. 22, 1330–1332.e1334 (2024).

    Article  PubMed  Google Scholar 

  10. Männistö, V. et al. ALT levels, alcohol use and metabolic risk factors have prognostic relevance for liver-related outcomes in the general population. JHEP Rep. 6, 101172 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gu, W. et al. Trends and the course of liver cirrhosis and its complications in Germany: Nationwide population-based study (2005 to 2018). Lancet Reg. Health Eur. 12, 100240 (2022).

    Article  PubMed  Google Scholar 

  12. Kann, A. E., Jepsen, P., Madsen, L. G., West, J. & Askgaard, G. Cause-specific mortality in patients with alcohol-related liver disease in Denmark: a population-based study. Lancet Gastroenterol. Hepatol. 8, 1028–1034 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Ekstedt, M. et al. Fibrosis stage is the strongest predictor for disease‐specific mortality in NAFLD after up to 33 years of follow‐up. Hepatology 61, 1547–1554 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Israelsen, M. et al. Validation of the new nomenclature of steatotic liver disease in patients with a history of excessive alcohol intake: an analysis of data from a prospective cohort study. Lancet Gastroenterol. Hepatol. 9, 409–410 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Kwak, M. et al. MASLD/MetALD and mortality in individuals with any cardio-metabolic risk factor: a population based study with 26.7 years of follow-up. Hepatology 10, 1097 (2024).

    Google Scholar 

  16. Sripongpun, P., Kaewdech, A., Udompap, P. & Kim, W. R. Characteristics and long-term mortality of individuals with MASLD, MetALD, and ALD, and the utility of SAFE Score. JHEP Rep. 6, 101127 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huang, D. Q. et al. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer. Cell Metab. 34, 969–977.e962 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, D. Q., Mathurin, P., Cortez-Pinto, H. & Loomba, R. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors. Nat. Rev. Gastroenterol. Hepatol. 20, 37–49 (2023).

    Article  PubMed  Google Scholar 

  19. Younossi, Z. M. et al. The changing epidemiology of adult liver transplantation in the United States in 2013-2022: the dominance of metabolic dysfunction–associated steatotic liver disease and alcohol-associated liver disease. Hepatol. Commun. 8, e0352 (2024).

    Article  PubMed  Google Scholar 

  20. Åberg, F., Jiang, Z. G., Cortez-Pinto, H. & Männistö, V. Alcohol-associated liver disease–global epidemiology. Hepatology 10, 1097 (2024).

    Google Scholar 

  21. Ochoa-Allemant, P. et al. Waitlisting and liver transplantation for MetALD in the United States: an analysis of the UNOS national registry. Hepatology 10, 1097 (2024).

    Google Scholar 

  22. Scholten, K. et al. You can’t handle the truth! Comparing serum phosphatidylethanol to self-reported alcohol intake in chronic liver disease patients. Dig. Liver Dis. 56, 1215–1219 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Nasr, P. et al. Misclassified alcohol-related liver disease is common in presumed metabolic dysfunction-associated steatotic liver disease and highly increases risk for future cirrhosis. Clin. Gastroenterol. Hepatol. 22, 1048–1057.e1042 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Staufer, K. et al. Ethyl glucuronide in hair detects a high rate of harmful alcohol consumption in presumed non-alcoholic fatty liver disease. J. Hepatol. 77, 918–930 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Hansen, E. D. et al. Quantification of alcohol intake in patients with steatotic liver disease and excessive alcohol intake. JHEP Rep. https://doi.org/10.1016/j.jhepr.2024.101200 (2024).

  26. Louvet, A. et al. Low alcohol consumption influences outcomes in individuals with alcohol-related compensated cirrhosis in a French multicenter cohort. J. Hepatol. 78, 501–512 (2023).

    Article  PubMed  Google Scholar 

  27. Wong, R. J. et al. Impact of longitudinal alcohol use patterns on long-term risk of cirrhosis among US veterans with steatotic liver disease. Gastroenterology 166, 1156–1165.e4 (2024).

    Article  PubMed  Google Scholar 

  28. Hofer, B. S. et al. Alcohol abstinence improves prognosis across all stages of portal hypertension in alcohol-related cirrhosis. Clin. Gastroenterol. Hepatol. 21, 2308–2317.e2307 (2023).

    Article  PubMed  Google Scholar 

  29. Rasmussen, D. N. et al. Prognostic performance of 7 biomarkers compared to liver biopsy in early alcohol-related liver disease. J. Hepatol. 75, 1017–1025 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Angulo, P. et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149, 389–397.e310 (2015).

    Article  PubMed  Google Scholar 

  31. Mallet, V. et al. Burden of liver disease progression in hospitalized patients with type 2 diabetes mellitus. J. Hepatol. 76, 265–274 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Griswold, M. G. et al. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 392, 1015–1035 (2018).

    Article  Google Scholar 

  33. Matteoni, C. A. et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116, 1413–1419 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Jarvis, H. et al. Does moderate alcohol consumption accelerate the progression of liver disease in NAFLD? A systematic review and narrative synthesis. BMJ Open 12, e049767 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Magherman, L. et al. Meta‐analysis: the impact of light‐to‐moderate alcohol consumption on progressive non‐alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 57, 820–836 (2023).

    Article  PubMed  Google Scholar 

  36. Moriya, A. et al. Alcohol consumption appears to protect against non‐alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 33, 378–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Dunn, W. et al. Modest alcohol consumption is associated with decreased prevalence of steatohepatitis in patients with non-alcoholic fatty liver disease (NAFLD). J. Hepatol. 57, 384–391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Romero-Gómez, M. et al. in Seminars in Liver Disease (Thieme Medical Publishers, Inc., 2024).

  39. Yeo, Y. H. et al. Alcohol intake thresholds among individuals with steatotic liver disease. JAMA Netw. Open 6, e2347548–e2347548 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marti-Aguado, D. et al. Low-to-moderate alcohol consumption is associated with increased fibrosis in individuals with metabolic dysfunction-associated steatotic liver disease. J. Hepatol. https://doi.org/10.1016/j.jhep.2024.06.036 (2024).

  41. Ekstedt, M. et al. Alcohol consumption is associated with progression of hepatic fibrosis in non-alcoholic fatty liver disease. Scand. J. Gastroenterol. 44, 366–374 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Ajmera, V. et al. Among patients with nonalcoholic fatty liver disease, modest alcohol use is associated with less improvement in histologic steatosis and steatohepatitis. Clin. Gastroenterol. Hepatol. 16, 1511–1520.e1515 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Roerecke, M. et al. Alcohol consumption and risk of liver cirrhosis: a systematic review and meta-analysis. Am. J. Gastroenterol. 114, 1574–1586 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tacke, F. et al. EASL–EASD–EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 81, 492–542 (2024).

    Article  Google Scholar 

  45. Shah, N. D. et al. Alcohol-related liver disease is rarely detected at early stages compared with liver diseases of other etiologies worldwide. Clin. Gastroenterol. Hepatol. 17, 2320–2329.e2312 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Karlsen, T. H. et al. The EASL–Lancet Liver Commission: protecting the next generation of Europeans against liver disease complications and premature mortality. Lancet 399, 61–116 (2022).

    Article  PubMed  Google Scholar 

  47. Israelsen, M., Rungratanawanich, W., Thiele, M. & Liangpunsakul, S. Non-invasive tests for alcohol-associated liver disease. Hepatology 10, 1097 (2024).

    Google Scholar 

  48. Thiele, M. et al. Accuracy of the enhanced liver fibrosis test vs FibroTest, elastography, and indirect markers in detection of advanced fibrosis in patients with alcoholic liver disease. Gastroenterology 154, 1369–1379 (2018).

    Article  PubMed  Google Scholar 

  49. Johnson, A. L. et al. Predicting liver‐related outcomes in people with nonalcoholic fatty liver disease: the prognostic value of noninvasive fibrosis tests. Hepatol. Commun. 6, 728–739 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Thorhauge, K. H. et al. Using liver stiffness to predict and monitor the risk of decompensation and mortality in patients with alcohol-related liver disease. J. Hepatol. 81, 23–32 (2024).

    Article  PubMed  Google Scholar 

  51. Avitabile, E. et al. Liver fibrosis screening increases alcohol abstinence. JHEP Rep. 6, 101165 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Subhani, M. et al. Does knowledge of liver fibrosis affect high-risk drinking behaviour (KLIFAD): an open-label pragmatic feasibility randomised controlled trial. EClinicalMedicine 61, 102069 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kjaergaard, M. et al. Screening for fibrosis promotes lifestyle changes: a prospective cohort study in 4796 individuals. Clin. Gastroenterol. Hepatol. 22, 1037–1047.e1039 (2024).

    Article  PubMed  Google Scholar 

  54. Torp, N. et al. Binge drinking induces an acute burst of markers of hepatic fibrogenesis (PRO‐C3). Liver Int. 42, 92–101 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Stankevic, E. et al. Binge drinking episode causes acute, specific alterations in systemic and hepatic inflammation‐related markers. Liver Int. 43, 2680–2691 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Schomerus, G. et al. The stigma of alcohol-related liver disease and its impact on healthcare. J. Hepatol. 77, 516–524 (2022).

    Article  PubMed  Google Scholar 

  57. Kilian, C. et al. Stigmatization of people with alcohol use disorders: an updated systematic review of population studies. Alcohol. Clin. Exp. Res. 45, 899–911 (2021).

    Article  PubMed  Google Scholar 

  58. Thursz, M. et al. EASL clinical practice guidelines: management of alcohol-related liver disease. J. Hepatol. 69, 154–181 (2018).

    Article  Google Scholar 

  59. Luoma, J. B. et al. Self-stigma in substance abuse: development of a new measure. J. Psychopathol. Behav. Assess. 35, 223–234 (2013).

    Article  PubMed  Google Scholar 

  60. Østberg, N., Jacobsen, B. G., Lauridsen, M. M. & Ladegaard Grønkjær, L. Mental health, quality of life, and stigmatization in Danish patients with liver disease. Int. J. Environ. Res. Public Health 20, 5497 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bush, K. et al. The AUDIT alcohol consumption questions (AUDIT-C): an effective brief screening test for problem drinking. Arch. Intern. Med. 158, 1789–1795 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Sobell, L. & Sobell, M. in Measuring Alcohol Consumption (eds Litten, R. Z. & Allen, J. P.) 41–72 (Humana Press Inc, 1992).

  63. Stewart, S. H., Koch, D. G., Willner, I. R., Anton, R. F. & Reuben, A. Validation of blood phosphatidylethanol as an alcohol consumption biomarker in patients with chronic liver disease. Alcohol. Clin. Exp. Res. 38, 1706–1711 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khanna, S., Shah, N. L. & Argo, C. K. Use of phosphatidylethanol testing in patients with liver disease. Am. J. Gastroenterol. 10, 14309 (2022).

    Google Scholar 

  65. Luginbuhl, M. et al. Consensus for the use of the alcohol biomarker phosphatidylethanol (PEth) for the assessment of abstinence and alcohol consumption in clinical and forensic practice (2022 Consensus of Basel). Drug Test. Anal. 14, 1800–1802 (2022).

    Article  PubMed  Google Scholar 

  66. Cabezas, J., Lucey, M. R. & Bataller, R. Biomarkers for monitoring alcohol use. Clin. Liver Dis. 8, 59–63 (2016).

    Article  Google Scholar 

  67. Stewart, S. H., Koch, D. G., Willner, I. R., Randall, P. K. & Reuben, A. Hair ethyl glucuronide is highly sensitive and specific for detecting moderate-to-heavy drinking in patients with liver disease. Alcohol Alcohol. 48, 83–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Triolo, V. et al. EtG quantification in hair and different reference cut-offs in relation to various pathologies: a scoping review. Toxics 10, 682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shield, K. D., Parry, C. & Rehm, J. Chronic diseases and conditions related to alcohol use. Alcohol Res. Curr. Rev. 35, 155 (2014).

    Google Scholar 

  70. Kim, D. et al. Changing trends in etiology-based annual mortality from chronic liver disease, from 2007 through 2016. Gastroenterology 155, 1154–1163.e1153 (2018).

    Article  PubMed  Google Scholar 

  71. Singh, S. P., Panigrahi, S., Mishra, D. & Khatua, C. R. Alcohol-associated liver disease, not hepatitis B, is the major cause of cirrhosis in Asia. J. Hepatol. 70, 1031–1032 (2019).

    Article  PubMed  Google Scholar 

  72. Asrani, S. K., Devarbhavi, H., Eaton, J. & Kamath, P. S. Burden of liver diseases in the world. J. Hepatol. 70, 151–171 (2019).

    Article  PubMed  Google Scholar 

  73. Chong, B. et al. Trends and predictions of malnutrition and obesity in 204 countries and territories: an analysis of the Global Burden of Disease Study 2019. EClinicalMedicine 57, 101850 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hart, C. L., Morrison, D. S., Batty, G. D., Mitchell, R. J. & Smith, G. D. Effect of body mass index and alcohol consumption on liver disease: analysis of data from two prospective cohort studies. BMJ 340, c1240 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Israelsen, M. et al. Metabolic and genetic risk factors are the strongest predictors of severity of alcohol-related liver fibrosis. Clin. Gastroenterol. Hepatol. 20, 1784–1794.e1789 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Åberg, F., Helenius‐Hietala, J., Puukka, P., Färkkilä, M. & Jula, A. Interaction between alcohol consumption and metabolic syndrome in predicting severe liver disease in the general population. Hepatology 67, 2141–2149 (2018).

    Article  PubMed  Google Scholar 

  77. Åberg, F. et al. Development and validation of a model to predict incident chronic liver disease in the general population: the CLivD score. J. Hepatol. 77, 302–311 (2022).

    Article  PubMed  Google Scholar 

  78. Kim, H.-s et al. Synergistic associations of PNPLA3 I148M variant, alcohol intake, and obesity with risk of cirrhosis, hepatocellular carcinoma, and mortality. JAMA Netw. Open 5, e2234221–e2234221 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ghouse, J. et al. Integrative common and rare variant analyses provide insights into the genetic architecture of liver cirrhosis. Nat. Genet. 56, 827–837 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Emdin, C. A. et al. Association of genetic variation with cirrhosis: a multi-trait genome-wide association and gene–environment interaction study. Gastroenterology 160, 1620–1633.e1613 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Ding, C. et al. Binge-pattern alcohol consumption and genetic risk as determinants of alcohol-related liver disease. Nat. Commun. 14, 8041 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wyper, G. M. et al. Evaluating the impact of alcohol minimum unit pricing on deaths and hospitalisations in Scotland: a controlled interrupted time series study. Lancet 401, 1361–1370 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Retat, L. et al. Preventing liver disease with policy measures to tackle alcohol consumption and obesity: the HEPAHEALTH II study. J. Hepatol. 80, 543–552 (2024).

    Article  PubMed  Google Scholar 

  85. Chang, Y. et al. Alcoholic and non-alcoholic fatty liver disease and associations with coronary artery calcification: evidence from the Kangbuk Samsung Health Study. Gut 68, 1667–1675 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Chang, W. H., Mueller, S. H., Chung, S.-C., Foster, G. R. & Lai, A. G. Increased burden of cardiovascular disease in people with liver disease: unequal geographical variations, risk factors and excess years of life lost. J. Trans. Med. 20, 1–13 (2022).

    Article  Google Scholar 

  87. Wild, S. H. et al. Cardiovascular disease, cancer, and mortality among people with type 2 diabetes and alcoholic or nonalcoholic fatty liver disease hospital admission. Diabetes Care 41, 341–347 (2018).

    Article  PubMed  Google Scholar 

  88. Chuong, V. et al. The glucagon-like peptide-1 (GLP-1) analogue semaglutide reduces alcohol drinking and modulates central GABA neurotransmission. JCI Insight 8, e170671 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Flippo, K. H. et al. FGF21 suppresses alcohol consumption through an amygdalo-striatal circuit. Cell Metab. 34, 317–328.e316 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jensen, E. L., Israelsen, M. & Krag, A. Transforming steatotic liver disease management: the emerging role of GLP-1 receptor agonists. Hepatol. Commun. 8, e0561 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wang, W. et al. Associations of semaglutide with incidence and recurrence of alcohol use disorder in real-world population. Nat. Commun. 15, 4548 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wester, A., Shang, Y., Grip, E. T., Matthews, A. A. & Hagström, H. Glucagon-like peptide-1 receptor agonists and risk of major adverse liver outcomes in patients with chronic liver disease and type 2 diabetes. Gut 73, 835–843 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. Quddos, F. et al. Semaglutide and Tirzepatide reduce alcohol consumption in individuals with obesity. Sci. Rep. 13, 20998 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Loomba, R. et al. Novel antisense inhibition of diacylglycerol O-acyltransferase 2 for treatment of non-alcoholic fatty liver disease: a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 5, 829–838 (2020).

    Article  PubMed  Google Scholar 

  95. Addison, T. Observations on fatty degeneration of the liver. Guys Hosp. Rep. 1, 485 (1836).

    Google Scholar 

  96. von Rokitansky, K. F. in A Manual of Pathological Anatomy (Sydenham Society, 1849).

  97. Eslam, M. et al. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158, 1999–2014.e1991 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Lee, B. P., Dodge, J. L. & Terrault, N. A. National prevalence estimates for steatotic liver disease and subclassifications using consensus nomenclature. Hepatology 79, 666–673 (2024).

    Article  PubMed  Google Scholar 

  99. Thiele, M. et al. Noninvasive assessment of hepatic decompensation. Hepatology https://doi.org/10.1097/HEP.0000000000000618 (2023).

  100. Sanyal, A. J. et al. Prospective study of outcomes in adults with nonalcoholic fatty liver disease. N. Engl. J. Med. 385, 1559–1569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hansen, C. D. et al. Effect of calorie-unrestricted low-carbohydrate, high-fat diet versus high-carbohydrate, low-fat diet on type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial. Ann. Intern. Med. 176, 10–21 (2023).

    Article  PubMed  Google Scholar 

  102. Holmer, M. et al. Treatment of NAFLD with intermittent calorie restriction or low-carb high-fat diet–a randomised controlled trial. JHEP Rep. 3, 100256 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Singal, A. K. et al. Nutritional status of patients with alcoholic cirrhosis undergoing liver transplantation: time trends and impact on survival. Transpl. Int. 26, 788–794 (2013).

    Article  PubMed  Google Scholar 

  104. Petermann-Rocha, F. et al. Diet modifies the association between alcohol consumption and severe alcohol-related liver disease incidence. Nat. Commun. 15, 6880 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen, V. L. et al. Genetic risk accentuates dietary effects on hepatic steatosis, inflammation and fibrosis in a population-based cohort. J. Hepatol. 81, 379–388 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. Stine, J. G. et al. NASHFit: a randomized controlled trial of an exercise training program to reduce clotting risk in patients with NASH. Hepatology 76, 172–185 (2022).

    Article  PubMed  Google Scholar 

  107. Houghton, D. et al. Effects of exercise on liver fat and metabolism in alcohol drinkers. Clin. Gastroenterol. Hepatol. 15, 1596–1603.e1593 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Marjot, T., Ray, D. W., Williams, F. R., Tomlinson, J. W. & Armstrong, M. J. Sleep and liver disease: a bidirectional relationship. Lancet Gastroenterol. Hepatol. 6, 850–863 (2021).

    Article  PubMed  Google Scholar 

  109. Britton, A., Fat, L. N. & Neligan, A. The association between alcohol consumption and sleep disorders among older people in the general population. Sci. Rep. 10, 5275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Swanson, G. R. et al. Night workers with circadian misalignment are susceptible to alcohol-induced intestinal hyperpermeability with social drinking. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G192–G201 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jbessone, F., Dirchwolf, M. & Rodil, M. Review article: drug-induced liver injury in the context of nonalcoholic fatty liver diseasea physiopathological and clinical integrated view. Aliment. Pharmacol. Ther. 48, 892–913 (2018).

    Article  Google Scholar 

  112. Krag, A. & Rinella, M. E. Steatotic liver disease: a new name to reflect the combined role of alcohol and metabolic dysfunction. Nat. Med. 30, 933–936 (2024).

    Article  CAS  PubMed  Google Scholar 

  113. Tacke, F., Puengel, T., Loomba, R. & Friedman, S. L. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J. Hepatol. 79, 552–566 (2023).

    Article  CAS  PubMed  Google Scholar 

  114. Ratziu, V. et al. Aramchol in patients with nonalcoholic steatohepatitis: a randomized, double-blind, placebo-controlled phase IIb trial. Nat. Med. 27, 1825–1835 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Harrison, S. A. et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N. Engl. J. Med. 390, 497–509 (2024).

    Article  PubMed  Google Scholar 

  116. Newsome, P. N. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384, 1113–1124 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Sanyal, A. J. et al. A phase 2 randomized trial of survodutide in MASH and fibrosis. N. Engl. J. Med. 391, 311–319 (2024).

    Article  CAS  PubMed  Google Scholar 

  118. Simon, T. G., Roelstraete, B., Khalili, H., Hagström, H. & Ludvigsson, J. F. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort. Gut 70, 1375–1382 (2021).

    Article  PubMed  Google Scholar 

  119. Israelsen, M. et al. Collagen proportionate area predicts clinical outcomes in patients with alcohol‐related liver disease. Aliment. Pharmacol. Ther. 52, 1728–1739 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Loomba, R. et al. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH. Hepatology 73, 625–643 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Villanueva, C. et al. β blockers to prevent decompensation of cirrhosis in patients with clinically significant portal hypertension (PREDESCI): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 393, 1597–1608 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Visekruna, A. & Luu, M. The role of short-chain fatty acids and bile acids in intestinal and liver function, inflammation, and carcinogenesis. Front. Cell Dev. Biol. 9, 703218 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bernstein, E. Y., Baggett, T. P., Trivedi, S., Herzig, S. J. & Anderson, T. S. Outcomes after initiation of medications for alcohol use disorder at hospital discharge. JAMA Netw. Open 7, e243387–e243387 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bergheim, I. et al. Metformin prevents alcohol-induced liver injury in the mouse: critical role of plasminogen activator inhibitor-1. Gastroenterology 130, 2099–2112 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Kim, R. G., Loomba, R., Prokop, L. J. & Singh, S. Statin use and risk of cirrhosis and related complications in patients with chronic liver diseases: a systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 15, 1521–1530.e1528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Israelsen, M. et al. Rifaximin-α for liver fibrosis in patients with alcohol-related liver disease (GALA-RIF): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Gastroenterol. Hepatol. 8, 523–532 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Arab, J. P., Addolorato, G., Mathurin, P. & Thursz, M. R. Alcohol-associated liver disease: integrated management with alcohol use disorder. Clin. Gastroenterol. Hepatol. 21, 2124–2134 (2023).

    Article  CAS  PubMed  Google Scholar 

  128. Mellinger, J. L. et al. Feasibility and early experience of a novel multidisciplinary alcohol-associated liver disease clinic. J. Subst. Abus. Treat. 130, 108396 (2021).

    Article  CAS  Google Scholar 

  129. Rumgay, H. et al. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. Lancet Oncol. 22, 1071–1080 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Bagnardi, V. et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose–response meta-analysis. Br. J. Cancer 112, 580–593 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Aboona, M. B. et al. Mortality outcomes in individuals with MASLD versus MASLD and increased alcohol intake. J. Gastroenterol. Hepatol. https://doi.org/10.1111/jgh.16726 (2024).

  132. Hagström, H., Thiele, M., Roelstraete, B., Söderling, J. & Ludvigsson, J. F. Mortality in biopsy-proven alcohol-related liver disease: a population-based nationwide cohort study of 3453 patients. Gut 70, 170–179 (2021).

    Article  PubMed  Google Scholar 

  133. Blaney, H. L. et al. Hepatology consultation is associated with decreased early return to alcohol use after discharge from an inpatient alcohol use disorder treatment program. Hepatol. Commun. 8, e0414 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

During the preparation of this work, the authors used ChatGTP to improve language and readability. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Aleksander Krag.

Ethics declarations

Competing interests

A.K. has served as speaker for Novo Nordisk, Norgine, Siemens and Nordic Bioscience; participated in advisory boards for Siemens, Boehringer Ingelheim and Novo Nordisk, all outside the submitted work; has received research support from Norgine, Siemens, Nordic Bioscience, Astra and Echosense; and is a board member and co-founder of Evido. N.T. and M.I. declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks Carolin Schneider, Karn Wijarnpreecha and Fredrik Åberg for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

NCT06409130: https://clinicaltrials.gov/study/NCT06409130

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torp, N., Israelsen, M. & Krag, A. The steatotic liver disease burden paradox: unravelling the key role of alcohol. Nat Rev Gastroenterol Hepatol 22, 281–292 (2025). https://doi.org/10.1038/s41575-024-01022-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-024-01022-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing