Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CRISPR–Cas9 delivery strategies for the modulation of immune and non-immune cells

Abstract

CRISPR–Cas9 genome editing technology is a promising tool for genetically engineering immune cells and modulating immune systems. Although ex vivo genome editing of immune cells has reached clinical trials, in vivo application is still restricted by the instability and inefficient delivery of CRISPR–Cas9 components to immune cells through circulation. In this Review, we summarize ex vivo and in vivo strategies to deliver CRISPR–Cas9 components to both non-immune and immune cells. We review the progress made in non-immune cells because it offers insights that can be applied to advancing research in immune cells. We also discuss principles and challenges of immune system modulation using CRISPR–Cas9 genome editing technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism and cellular delivery of CRISPR–Cas9 gene editing system.
Fig. 2: CRISPR–Cas9 delivery to immune cells.
Fig. 3: Delivery approaches for immune cell genome editing with CRISPR–Cas9.
Fig. 4: Timeline of CRISPR–Cas9-based gene editing of immune cells.

Similar content being viewed by others

References

  1. Jacobson, D. L., Gange, S. J., Rose, N. R. & Graham, N. M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 84, 223–243 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Marrack, P., Kappler, J. & Kotzin, B. L. Autoimmune disease: why and where it occurs. Nat. Med. 7, 899–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Bogdanove, A. J. & Voytas, D. F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843–1846 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo, C., Ma, X., Gao, F. & Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 11, 1143157 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kouranova, E. et al. CRISPRs for optimal targeting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Hum. Gene Ther. 27, 464–475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kumar, R. et al. Polymeric delivery of therapeutic nucleic acids. Chem. Rev. 121, 11527–11652 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Sahel, D. K. et al. CRISPR/Cas9 genome editing for tissue-specific in vivo targeting: nanomaterials and translational perspective. Adv. Sci. 10, e2305072 (2023).

    Article  Google Scholar 

  12. Pesch, T. et al. Molecular design, optimization, and genomic integration of chimeric B cell receptors in murine B cells. Front. Immunol. 10, 2630 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, Y. A.-O., Wang, D., Lü, P., Ma, S. & Chen, K. Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system. Mol. Biol. Rep. 50, 3723–3738 (2019).

    Article  Google Scholar 

  14. Senthilnathan, R. A.-O. X. et al. An update on CRISPR-Cas12 as a versatile tool in genome editing. Mol. Biol. Rep. 50, 2865–2881 (2019).

    Article  Google Scholar 

  15. Liu, H., Zhu, Y., Li, M. & Gu, Z. A.-O. Precise genome editing with base editors. Med. Rev. 22, 75–84 (2019).

    Google Scholar 

  16. Doman, J. L., Sousa, A. A., Randolph, P. B., Chen, P. J. & Liu, D. R. Designing and executing prime editing experiments in mammalian cells. Nat. Protoc. 17, 2431–2468 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao, Z., Shang, P., Mohanraju, P. & Geijsen, N. Prime editing: advances and therapeutic applications. Trends Biotechnol. 41, 1000–1012 (2022).

    Article  Google Scholar 

  18. Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, T. et al. Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA and DNA methylation machinery. Nat. Commun. 13, 1855 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhowmik, R. & Chaubey, B. CRISPR/Cas9: a tool to eradicate HIV-1. AIDS Res. Ther. 19, 58 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stefanoudakis, D. et al. The potential revolution of cancer treatment with CRISPR technology. Cancers 15, 1813 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Legut, M., Dolton, G., Mian, A. A., Ottmann, O. G. & Sewell, A. K. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 131, 311–322 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ray, M. et al. CRISPRed macrophages for cell-based cancer immunotherapy. Bioconjug. Chem. 29, 445–450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, C. et al. Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat. Commun. 9, 4092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Limanskiy, V., Vyas, A., Chaturvedi, L. S. & Vyas, D. Harnessing the potential of gene editing technology using CRISPR in inflammatory bowel disease. World J. Gastroenterol. 25, 2177–2187 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bevacqua, R. J. et al. CRISPR-based genome editing in primary human pancreatic islet cells. Nat. Commun. 12, 2397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baker, C. & Hayden, M. S. Gene editing in dermatology: harnessing CRISPR for the treatment of cutaneous disease. F1000Res. 9, 281 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin, W. et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat. Commun. 14, 265 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Levy, E. C., J., Reger, R., Allan, D. & Childs, R. RNA-seq analysis reveals CCR5 as a key target for CRISPR gene editing to regulate in vivo NK cell trafficking. Cancers 13, 872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo, X. et al. CBLB ablation with CRISPR/Cas9 enhances cytotoxicity of human placental stem cell-derived NK cells for cancer immunotherapy. J. Immunother. Cancer 9, e001975 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Greiner, V. et al. CRISPR-mediated editing of the B cell receptor in primary human B cells. iScience 12, 369–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, H. et al. CRISPR/Cas9-mediated gene editing in human iPSC-derived macrophage reveals lysosomal acid lipase function in human macrophages — brief report. Arterioscler. Thromb. Vasc. Biol. 37, 2156–2160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dimitri, A., Herbst, F. & Fraietta, J. A. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol. Cancer 21, 78 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nussing, S. et al. Efficient CRISPR/Cas9 gene editing in uncultured naive mouse T cells for in vivo studies. J. Immunol. 204, 2308–2315 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, J. et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature 609, 369–374 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ghaffari, S., Khalili, N. & Rezaei, N. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. J. Exp. Clin. Cancer Res. 40, 269 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu, Y. et al. Safety and efficacy of CRISPR-based non-viral PD1 locus specifically integrated anti-CD19 CAR-T cells in patients with relapsed or refractory non-Hodgkin’s lymphoma: a first-in-human phase I study. EClinicalMedicine 60, 102010 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lefesvre, P., Attema, J. & van Bekkum, D. A comparison of efficacy and toxicity between electroporation and adenoviral gene transfer. BMC Mol. Biol. 3, 12 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schudel, A., Francis, D. M. & Thomas, S. N. Material design for lymph node drug delivery. Nat. Rev. Mater. 4, 415–428 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bulcaen, M. & Carlon, M. S. Gene editing flows to the lungs. Science 384, 1175–1176 (2019).

    Article  Google Scholar 

  47. Lieleg, O., Baumgartel, R. M. & Bausch, A. R. Selective filtering of particles by the extracellular matrix: an electrostatic bandpass. Biophys. J. 97, 1569–1577 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lechardeur, D. & Lukacs, G. L. Intracellular barriers to non-viral gene transfer. Curr. Gene Ther. 2, 183–194 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Shui, S., Wang, S. & Liu, J. Systematic investigation of the effects of multiple SV40 nuclear localization signal fusion on the genome editing activity of purified SpCas9. Bioengineering 9, 83 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alberts B. et al. in Molecular Biology of the Cell Ch. 2, Ch. 12 (Garland Science, 2002).

  51. Lin, Y., Wagner, E. & Lachelt, U. Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater. Sci. 10, 1166–1192 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, C., Zhang, L., Liu, H. & Cheng, K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control. Release 266, 17–26 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 6, 53 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fajrial, A. K., He, Q. Q., Wirusanti, N. I., Slansky, J. E. & Ding, X. A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. Theranostics 10, 5532–5549 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Frangoul, H. et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Philippidis, A. CASGEVY makes history as FDA approves first CRISPR/Cas9 genome edited therapy. Hum. Gene Ther. 35, 1–4 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, P., Zhang, G. & Wan, X. Challenges and new technologies in adoptive cell therapy. J. Hematol. Oncol. 16, 97 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hamilton, A. G., Swingle, K. L. & Mitchell, M. J. Biotechnology: overcoming biological barriers to nucleic acid delivery using lipid nanoparticles. PLoS Biol. 21, e3002105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Asmamaw Mengstie, M. Viral vectors for the in vivo delivery of CRISPR components: advances and challenges. Front. Bioeng. Biotechnol. 10, 895713 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yu, J. et al. Design of a self-driven probiotic-CRISPR/Cas9 nanosystem for sono-immunometabolic cancer therapy. Nat. Commun. 13, 7903 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shirley, J. L., de Jong, Y. P., Terhorst, C. & Herzog, R. W. Immune responses to viral gene therapy vectors. Mol. Ther. 28, 709–722 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ramamoorth, M. & Narvekar, A. Non viral vectors in gene therapy — an overview. J. Clin. Diagn. Res. 9, GE01–GE06 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Wells, D. J. Gene therapy progress and prospects: electroporation and other physical methods. Gene Ther. 11, 1363–1369 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Wang, M. et al. Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubble-cell parameters. Sci. Rep. 8, 3885 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Landwehr, G. M. et al. Biophysical analysis of fluid shear stress induced cellular deformation in a microfluidic device. Biomicrofluidics 12, 054109 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gu, B., Posfai, E. & Rossant, J. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nat. Biotechnol. 36, 632–637 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sawyer, G. J. et al. Cardiovascular function following acute volume overload for hydrodynamic gene delivery to the liver. Gene Ther. 14, 1208–1217 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Tanihara, F. et al. Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation. Anim. Sci. J. 90, 55–61 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Cai, J., Huang, S., Yi, Y. & Bao, S. Ultrasound microbubble-mediated CRISPR/Cas9 knockout of C-erbB-2 in HEC-1A cells. J. Int. Med. Res. 47, 2199–2206 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Anderson, C. D. et al. Non-viral in vivo cytidine base editing in hepatocytes using focused ultrasound targeted microbubbles. Mol. Ther. Nucleic Acids 33, 733–737 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, Y. et al. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci. Rep. 5, 8256 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Raveux, A., Vandormael-Pournin, S. & Cohen-Tannoudji, M. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci. Rep. 7, 42661 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hashimoto, M. & Takemoto, T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci. Rep. 5, 11315 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lino, C. A., Harper, J. C., Carney, J. P. & Timlin, J. A. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 25, 1234–1257 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hur, J. & Chung, A. J. Microfluidic and nanofluidic intracellular delivery. Adv. Sci. 8, e2004595 (2021).

    Article  Google Scholar 

  77. Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551–553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guan, Y. et al. CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol. Med. 8, 477–488 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl Acad. Sci. USA 112, 10437–10442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Abe, T., Inoue, K. I., Furuta, Y. & Kiyonari, H. Pronuclear microinjection during S-phase increases the efficiency of CRISPR-Cas9-assisted knockin of large DNA donors in mouse zygotes. Cell Rep. 31, 107653 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Seki, A. & Rutz, S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J. Exp. Med. 215, 985–997 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pavlovic, K. et al. Using gene editing approaches to fine-tune the immune system. Front. Immunol. 11, 570672 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu, C. M. et al. Genetic engineering in primary human B cells with CRISPR-Cas9 ribonucleoproteins. J. Immunol. Methods 457, 33–40 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moffett, H. F. et al. B cells engineered to express pathogen-specific antibodies protect against infection. Sci. Immunol. 4, eaax0644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Huang, R. S., Lai, M. C. & Lin, S. Ex vivo expansion and CRISPR-Cas9 genome editing of primary human natural killer cells. Curr. Protoc. 1, e246 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Rautela, J., Surgenor, E. & Huntington, N. Efficient genome editing of human natural killer cells by CRISPR RNP. Preprint at bioRxiv https://doi.org/10.1101/406934 (2018).

  87. Zhu, H. et al. Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell 27, 224–237.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. DiTommaso, T. et al. Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo. Proc. Natl Acad. Sci. USA 115, E10907–E10914 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Murphy, K. R. et al. High-frequency irreversible electroporation brain tumor ablation: exploring the dynamics of cell death and recovery. Bioelectrochemistry 144, 108001 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Rupp, L. J. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7, 737 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kaminski, R. et al. Elimination of HIV-1 genomes from human T-lymphoid cells by CRISPR/Cas9 gene editing. Sci. Rep. 6, 22555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kotterman, M. A., Chalberg, T. W. & Schaffer, D. V. Viral vectors for gene therapy: translational and clinical outlook. Annu. Rev. Biomed. Eng. 17, 63–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Zincarelli, C., Soltys, S., Rengo, G. & Rabinowitz, J. E. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol. Ther. 16, 1073–1080 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Naso, M. F., Tomkowicz, B., Perry, W. L. III & Strohl, W. R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31, 317–334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nyberg, W. A. et al. An evolved AAV variant enables efficient genetic engineering of murine T cells. Cell 186, 446–460.e19 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li, A. et al. A self-deleting AAV-CRISPR system for in vivo genome editing. Mol. Ther. Methods Clin. Dev. 12, 111–122 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Schiwon, M. et al. One-vector system for multiplexed CRISPR/Cas9 against hepatitis B virus cccDNA utilizing high-capacity adenoviral vectors. Mol. Ther. Nucleic Acids 12, 242–253 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wang, D. et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 26, 432–442 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu, Z., Yang, H. & Colosi, P. Effect of genome size on AAV vector packaging. Mol. Ther. 18, 80–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Cheong, T. C., Compagno, M. & Chiarle, R. Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. Nat. Commun. 7, 10934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Voss, J. E. et al. Reprogramming the antigen specificity of B cells using genome-editing technologies. eLife 8, e42995 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hung, K. L. et al. Engineering protein-secreting plasma cells by homology-directed repair in primary human B cells. Mol. Ther. 26, 456–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Johnson, M. J., Laoharawee, K., Lahr, W. S., Webber, B. R. & Moriarity, B. S. Engineering of primary human B cells with CRISPR/Cas9 targeted nuclease. Sci. Rep. 9, 12144 (2018).

    Article  Google Scholar 

  104. Li, C. et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J. Gen. Virol. 96, 2381–2393 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Sutlu, T. et al. Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: implications for gene therapy. Hum. Gene Ther. 23, 1090–1100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jo, D. H. et al. Simultaneous engineering of natural killer cells for CAR transgenesis and CRISPR-Cas9 knockout using retroviral particles. Mol. Ther. Methods Clin. Dev. 29, 173–184 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pomeroy, E. J. et al. A genetically engineered primary human natural killer cell platform for cancer immunotherapy. Mol. Ther. 28, 52–63 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Jost, M. et al. CRISPR-based functional genomics in human dendritic cells. eLife 10, e65856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dufait, I. et al. Retroviral and lentiviral vectors for the induction of immunological tolerance. Scientifica 2012, 694137 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Aguado, B. A., Grim, J. C., Rosales, A. M., Watson-Capps, J. J. & Anseth, K. S. Engineering precision biomaterials for personalized medicine. Sci. Transl. Med. 10, eaam8645 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Madigan, V., Zhang, F. & Dahlman, J. E. Drug delivery systems for CRISPR-based genome editors. Nat. Rev. Drug Discov. 22, 875–894 (2023).

    Article  CAS  PubMed  Google Scholar 

  113. Barua, S. & Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9, 223–243 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Luo, Y. L. et al. Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano 12, 994–1005 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  117. Schoenmaker, L. et al. mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. Int. J. Pharm. 601, 120586 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hassett, K. J. et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids 15, 1–11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Suzuki, Y. & Ishihara, H. Difference in the lipid nanoparticle technology employed in three approved siRNA (patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab. Pharmacokinet. 41, 100424 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tenchov, R., Bird, R., Curtze, A. E. & Zhou, Q. Lipid nanoparticles-from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano https://doi.org/10.1021/acsnano.1c04996 (2021).

  121. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Wang, M. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl Acad. Sci. USA 113, 2868–2873 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wei, T., Cheng, Q., Min, Y.-L., Olson, E. N. & Siegwart, D. J. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 11, 3232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Miller, J. B. et al. Non‐viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co‐delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed. 56, 1059–1063 (2017).

    Article  CAS  Google Scholar 

  125. Liu, J. et al. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv. Mater. 31, 1902575 (2019).

    Article  Google Scholar 

  126. Chen, K. et al. Engineering self-deliverable ribonucleoproteins for genome editing in the brain. Nat. Commun. 15, 1727 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Liang, X. et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208, 44–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Aksoy, Y. A. et al. Spatial and temporal control of CRISPR-Cas9-mediated gene editing delivered via a light-triggered liposome system. ACS Appl. Mater. Interfaces 12, 52433–52444 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Cho, E. Y. et al. Lecithin nano-liposomal particle as a CRISPR/Cas9 complex delivery system for treating type 2 diabetes. J. Nanobiotechnol. 17, 19 (2019).

    Article  Google Scholar 

  130. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lipid nanoparticle-enabled gene editing in the lung via inhalation. Nat. Biotechnol. 41, 1394–1395 (2023).

  133. Qiu, M. et al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl Acad. Sci. USA 118, e2020401118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rosenblum, D. et al. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci. Adv. 6, eabc9450 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Gautam, M. et al. Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nat. Commun. 14, 6468 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gillmore, J. D. et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Longhurst, H. J. et al. CRISPR-Cas9 in vivo gene editing of KLKB1 for hereditary angioedema. N. Engl. J. Med. 390, 432–441 (2024).

    Article  CAS  PubMed  Google Scholar 

  140. Gao, Q. et al. Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy. Cancer Med. 8, 4254–4264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kozma, G. T., Shimizu, T., Ishida, T. & Szebeni, J. Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug Deliv. Rev. 154–155, 163–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Yasuda, S. et al. Comparison of the type of liposome involving cytokine production induced by non-CpG lipoplex in macrophages. Mol. Pharm. 7, 533–542 (2020).

    Article  Google Scholar 

  144. Inglut, C. T. et al. Immunological and toxicological considerations for the design of liposomes. Nanomaterials 10, 190 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen, S. P. & Blakney, A. K. Immune response to the components of lipid nanoparticles for ribonucleic acid therapeutics. Curr. Opin. Biotechnol. 85, 103049 (2024).

    Article  CAS  PubMed  Google Scholar 

  146. Machtakova, M., Therien-Aubin, H. & Landfester, K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem. Soc. Rev. 51, 128–152 (2022).

    Article  CAS  PubMed  Google Scholar 

  147. Emami, M. R. et al. Polyrotaxane nanocarriers can deliver CRISPR/Cas9 plasmid to dystrophic muscle cells to successfully edit the DMD gene. Adv. Ther. 2, 1900061 (2019).

    Article  Google Scholar 

  148. Gao, X. et al. Hyperbranched poly (β-amino ester) based polyplex nanopaticles for delivery of CRISPR/Cas9 system and treatment of HPV infection associated cervical cancer. J. Control. Release 321, 654–668 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Li, M. et al. Optimized nanoparticle-mediated delivery of CRISPR-Cas9 system for B cell intervention. Nano Res. 11, 6270–6282 (2018).

    Article  CAS  Google Scholar 

  150. Xiu, K. et al. Delivery of CRISPR/Cas9 plasmid DNA by hyperbranched polymeric nanoparticles enables efficient gene editing. Cells https://doi.org/10.3390/cells12010156 (2022).

  151. Siemer, S. et al. Targeting cancer chemotherapy resistance by precision medicine-driven nanoparticle-formulated cisplatin. ACS Nano 15, 18541–18556 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Xie, R. et al. pH-responsive polymer nanoparticles for efficient delivery of Cas9 ribonucleoprotein with or without donor DNA. Adv. Mater. 34, e2110618 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zhao, L. et al. HSP70-promoter-driven CRISPR/Cas9 system activated by reactive oxygen species for multifaceted anticancer immune response and potentiated immunotherapy. ACS Nano 16, 13821–13833 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Wang, R. et al. Synthesis and gene delivery of poly(amido amine)s with different branched architecture. Biomacromolecules 11, 489–495 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Kang, Y. K. et al. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjug. Chem. 28, 957–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Timin, A. S. et al. Efficient gene editing via non-viral delivery of CRISPR-Cas9 system using polymeric and hybrid microcarriers. Nanomedicine 14, 97–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Sun, W. et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem. Int. Ed. 54, 12029–12033 (2015).

    Article  CAS  Google Scholar 

  158. Yue, H., Zhou, X., Cheng, M. & Xing, D. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale 10, 1063–1071 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Hryhorowicz, M. et al. Improved delivery of CRISPR/Cas9 system using magnetic nanoparticles into porcine fibroblast. Mol. Biotechnol. 61, 173–180 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Rogers, G. L. & Cannon, P. M. Genome edited B cells: a new frontier in immune cell therapies. Mol. Ther. 29, 3192–3204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Perrin, S. & Magill, M. The inhibition of CD40/CD154 costimulatory signaling in the prevention of renal transplant rejection in nonhuman primates: a systematic review and meta analysis. Front. Immunol. 13, 861471 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhang, Y. et al. In situ repurposing of dendritic cells with CRISPR/Cas9-based nanomedicine to induce transplant tolerance. Biomaterials 217, 119302 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Nguyen, D. N. et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 44–49 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Murphy, C. J. et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Liu, J. et al. Dual-responsive core-shell tecto dendrimers enable efficient gene editing of cancer cells to boost immune checkpoint blockade therapy. ACS Appl. Mater. Interfaces 15, 12809–12821 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Huang, L. et al. A cancer cell membrane-derived biomimetic nanocarrier for synergistic photothermal/gene therapy by efficient delivery of CRISPR/Cas9 and gold nanorods. Adv. Healthc. Mater. 11, e2201038 (2022).

    Article  PubMed  Google Scholar 

  167. Lee, Y. W. et al. In vivo editing of macrophages through systemic delivery of CRISPR-Cas9-ribonucleoprotein-nanoparticle nanoassemblies. Adv. Ther. 2, 1900041 (2019).

    Article  CAS  Google Scholar 

  168. Rodriguez-Izquierdo, I. et al. Gold nanoparticles crossing blood-brain barrier prevent HSV-1 infection and reduce herpes associated amyloid-βsecretion. J. Clin. Med. 9, 155 (2020).

    Article  CAS  Google Scholar 

  169. Johnsen, K. B. et al. Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo. J. Control. Release 295, 237–249 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Wang, P. et al. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew. Chem. Int. Ed. 57, 1491–1496 (2018).

    Article  CAS  Google Scholar 

  172. Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mout, R. et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11, 2452–2458 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lee, Y. W. et al. In vivo editing of macrophages through systemic delivery of CRISPR‐Cas9‐ribonucleoprotein‐nanoparticle nanoassemblies. Adv. Ther. 2, 1900041 (2019).

    Article  CAS  Google Scholar 

  175. Willingham, S. B. et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc. Natl Acad. Sci. USA 109, 6662–6667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Alsaiari, S. K. et al. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc. 140, 143–146 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. Alyami, M. Z. et al. Cell-type-specific CRISPR/Cas9 delivery by biomimetic metal organic frameworks. J. Am. Chem. Soc. 142, 1715–1720 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Pan, Y. et al. Near-infrared upconversion–activated CRISPR-Cas9 system: a remote-controlled gene editing platform. Sci. Adv. 5, eaav7199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ramakrishna, S. et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020–1027 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Rouet, R. et al. Receptor-mediated delivery of CRISPR-Cas9 endonuclease for cell-type-specific gene editing. J. Am. Chem. Soc. 140, 6596–6603 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang, Z. et al. Efficient engineering of human and mouse primary cells using peptide-assisted genome editing. Nat. Biotechnol. 42, 305–315 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Foss, D. V. et al. Peptide-mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes. Nat. Biomed. Eng. 7, 647–660 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Ikwuagwu, B. & Tullman-Ercek, D. Virus-like particles for drug delivery: a review of methods and applications. Curr. Opin. Biotechnol. 78, 102785 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Hamilton, J. R. et al. Targeted delivery of CRISPR-Cas9 and transgenes enables complex immune cell engineering. Cell Rep. 35, 109207 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kingwell, K. First CRISPR therapy seeks landmark approval. Nat. Rev. Drug Discov. 22, 339–341 (2023).

    Article  CAS  PubMed  Google Scholar 

  186. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Musunuru, K. et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature 593, 429–434 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.K.A. thanks King Abdulaziz City of Science and Technology for Ibn Khaldun (IBK) fellowship support. M.K. thanks the Bodossaki Foundation for fellowship support. G.L. thanks the US National Science Foundation graduate research fellowship (DEG 2146752). The authors thank R. Wilson, UC Berkeley, for the feedback and comments.

Author information

Authors and Affiliations

Authors

Contributions

S.K.A., B.D. and B.E. contributed equally to the manuscript and conducted the initial literature research and, in consultation with A.J., outlined the general manuscript format. B.D., S.K.A. and B.E. wrote the manuscript draft, with contributions from M.K. and G.L. in the chemical vector section, and X.W., L.Z. and M.C. in the literature research for ex vivo delivery. X.Y. contributed to Fig. 4. B.E., S.K.A., R.L. and A.J. contributed to the manuscript revision. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Robert Langer or Ana Jaklenec.

Ethics declarations

Competing interests

A.J. receives licensing fees from patents in which she was an inventor, and she invested in, consults for (or was on Scientific Advisory Boards or Boards of Directors), lectured at (and received a fee), or conducts sponsored research at MIT, for which she was not paid, for the following entities: The Estée Lauder Companies, Moderna Therapeutics, OmniPulse Biosciences, Particles for Humanity, SiO2 Materials Science, and VitaKey. For a list of entities with which R.L. is or has been recently involved with or had been compensated or uncompensated by, see Supplementary information. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaiari, S.K., Eshaghi, B., Du, B. et al. CRISPR–Cas9 delivery strategies for the modulation of immune and non-immune cells. Nat Rev Mater 10, 44–61 (2025). https://doi.org/10.1038/s41578-024-00725-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-024-00725-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research