Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Magnetic resonance imaging of renal oxygenation

Abstract

Renal hypoxia has a key role in the pathophysiology of many kidney diseases. MRI provides surrogate markers of oxygenation, offering a critical opportunity to detect renal hypoxia. However, studies that have assessed the diagnostic performance of oxygenation MRI for kidney disorders have provided inconsistent results because MRI metrics do not fully capture the complexity of renal oxygenation. Most oxygenation MRI studies are descriptive in nature and fail to detail the pathophysiological importance of the imaging findings. These limitations have restricted the clinical application of oxygenation MRI and the full potential of this technology to facilitate early diagnosis, risk prediction and treatment monitoring of kidney disease has not yet been realized. Understanding of the relationship between renal tissue oxygenation and MRI metrics, which is affected by kidney size, tubular volume fraction and renal blood volume fraction, and measurement of these factors using novel MR methods is imperative for correct physiological interpretation of renal MR oximetry findings. Next steps to enable the clinical adoption of MR oximetry should involve multidisciplinary collaboration to address standardization of acquisition and data analysis protocols and establish reference values of MRI metrics.

Key points

  • Measurement of renal oxygenation using MRI could potentially enable early diagnosis, risk prediction and treatment monitoring of kidney disease as well as provide new insights into kidney pathophysiology and aid drug development.

  • The MRI metrics transverse relaxation time (T2) and effective transversal relaxation time (T2*) are sensitive to blood oxygenation but do not fully capture renal tissue oxygenation; this limitation is a major constraint for physiological interpretation and clinical application of oxygenation MRI for kidney disorders.

  • Changes in renal blood volume fraction, tubular volume fraction and kidney size have a paramount effect on the relationship of renal T2 and T2* to tissue oxygenation.

  • MRI measurements of kidney size, tubular volume fraction and renal blood volume fraction are essential for correct physiological interpretation of renal MR oximetry.

  • Oxygenation-sensitized MRI provides distinct identifiers of kidney health and disease and is poised to become an invaluable clinical tool.

  • Next steps to clinical adoption of MR oximetry in nephrology should address standardization of data acquisition and analysis and determine reference renal T2* and T2 values calibrated to magnetic field strength, age, sex and BMI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of blood-oxygenation-level-dependent MRI.
Fig. 2: Oxygenation-sensitized MRI of rat kidneys.
Fig. 3: From T2* and T2 sensitized MRI of the kidney to true renal tissue oxygenation.
Fig. 4: Assessment of kidney size supports interpretation of MRI-based assessment of renal oxygenation in acute pathophysiological scenarios.
Fig. 5: MRI assessment of renal tubular volume fraction.
Fig. 6: MRI assessment of renal blood volume fraction.
Fig. 7: Concomitant assessment of TVF and rBVF helps to accurately determine the pathophysiological role of changes in renal oxygenation as assessed by renal T2 and T2*.

Similar content being viewed by others

References

  1. Brezis, M. & Rosen, S. Hypoxia of the renal medulla-its implications for disease. N. Engl. J. Med. 332, 647–655 (1995).

    Article  PubMed  CAS  Google Scholar 

  2. Evans, R. G. et al. Haemodynamic influences on kidney oxygenation: the clinical implications of integrative physiology. Clin. Exp. Pharmacol. Physiol. 40, 106–122 (2013).

    Article  PubMed  CAS  Google Scholar 

  3. Evans, R. G., Smith, D. W., Lee, C. J., Ngo, J. P. & Gardiner, B. S. What makes the kidney susceptible to hypoxia? Anat. Rec. 303, 2544–2552 (2020).

    Article  CAS  Google Scholar 

  4. Cantow, K. et al. Quantitative assessment of renal perfusion and oxygenation by invasive probes: basic concepts. Methods Mol. Biol. 2216, 89–107 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bane, O. et al. Renal MRI: from nephron to NMR signal. J. Magn. Reson. Imaging 58, 1660–1679 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Edwards, A. & Kurtcuoglu, V. Renal blood flow and oxygenation. Pflug. Arch. 474, 759–770 (2022).

    Article  CAS  Google Scholar 

  7. Seeliger, E., Sendeski, M., Rihal, C. S. & Persson, P. B. Contrast-induced kidney injury: mechanisms, risk factors, and prevention. Eur. Heart J. 33, 2007–2015 (2012).

    Article  PubMed  Google Scholar 

  8. Shu, S. et al. Hypoxia and hypoxia-inducible factors in kidney injury and repair. Cells 8, 207 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hultstrom, M., Becirovic-Agic, M. & Jonsson, S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol. Genomics 50, 127–141 (2018).

    Article  PubMed  Google Scholar 

  10. Calzavacca, P., Evans, R. G., Bailey, M., Bellomo, R. & May, C. N. Cortical and medullary tissue perfusion and oxygenation in experimental septic acute kidney injury. Crit. Care Med. 43, e431–e439 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. Ma, S. et al. Sepsis-induced acute kidney injury: a disease of the microcirculation. Microcirculation 26, e12483 (2019).

    Article  PubMed  Google Scholar 

  12. Fahling, M. et al. Cyclosporin a induces renal episodic hypoxia. Acta Physiol. 219, 625–639 (2017).

    Article  CAS  Google Scholar 

  13. Jensen, A. M., Norregaard, R., Topcu, S. O., Frokiaer, J. & Pedersen, M. Oxygen tension correlates with regional blood flow in obstructed rat kidney. J. Exp. Biol. 212, 3156–3163 (2009).

    Article  PubMed  CAS  Google Scholar 

  14. Gardiner, B. S., Smith, D. W., Lee, C. J., Ngo, J. P. & Evans, R. G. Renal oxygenation: from data to insight. Acta Physiol. 228, e13450 (2020).

    Article  CAS  Google Scholar 

  15. Scholz, H. et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat. Rev. Nephrol. 17, 335–349 (2021).

    Article  PubMed  CAS  Google Scholar 

  16. Molitoris, B. A. Low-flow acute kidney injury: the pathophysiology of prerenal azotemia, abdominal compartment syndrome, and obstructive uropathy. Clin. J. Am. Soc. Nephrol. 17, 1039–1049 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hirakawa, Y., Tanaka, T. & Nangaku, M. Renal hypoxia in CKD; pathophysiology and detecting methods. Front. Physiol. 8, 99 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Yeh, T. H., Tu, K. C., Wang, H. Y. & Chen, J. Y. From acute to chronic: unraveling the pathophysiological mechanisms of the progression from acute kidney injury to acute kidney disease to chronic kidney disease. Int. J. Mol. Sci. 25, 1755 (2024).

  20. Tanaka, S., Tanaka, T. & Nangaku, M. Hypoxia as a key player in the AKI-to-CKD transition. Am. J. Physiol. Renal Physiol. 307, F1187–F1195 (2014).

    Article  PubMed  CAS  Google Scholar 

  21. Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17, 17–25 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. Zuk, A. & Bonventre, J. V. Recent advances in acute kidney injury and its consequences and impact on chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 28, 397–405 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Evans, R. G., Ow, C. P. & Bie, P. The chronic hypoxia hypothesis: the search for the smoking gun goes on. Am. J. Physiol. Renal Physiol. 308, F101–F102 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. dos Santos, E. A., Li, L. P., Ji, L. & Prasad, P. V. Early changes with diabetes in renal medullary hemodynamics as evaluated by fiberoptic probes and BOLD magnetic resonance imaging. Invest. Radiol. 42, 157–162 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Calvin, A. D., Misra, S. & Pflueger, A. Contrast-induced acute kidney injury and diabetic nephropathy. Nat. Rev. Nephrol. 6, 679–688 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hansell, P., Welch, W. J., Blantz, R. C. & Palm, F. Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension. Clin. Exp. Pharmacol. Physiol. 40, 123–137 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. DeFronzo, R. A., Reeves, W. B. & Awad, A. S. Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 17, 319–334 (2021).

    Article  PubMed  CAS  Google Scholar 

  28. Sato, Y. & Yanagita, M. Immune cells and inflammation in AKI to CKD progression. Am. J. Physiol. Renal Physiol. 315, F1501–f1512 (2018).

    Article  PubMed  CAS  Google Scholar 

  29. Li, L., Fu, H. & Liu, Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat. Rev. Nephrol. 18, 545–557 (2022).

    Article  PubMed  CAS  Google Scholar 

  30. Porrini, E. et al. Estimated GFR: time for a critical appraisal. Nat. Rev. Nephrol. 15, 177–190 (2019).

    Article  PubMed  CAS  Google Scholar 

  31. Hinze, C. & Schmidt-Ott, K. M. Acute kidney injury biomarkers in the single-cell transcriptomic era. Am. J. Physiol. Cell Physiol. 323, C1430–C1443 (2022).

    Article  PubMed  CAS  Google Scholar 

  32. Fähling, M., Seeliger, E., Patzak, A. & Persson, P. B. Understanding and preventing contrast-induced acute kidney injury. Nat. Rev. Nephrol. 13, 169–180 (2017).

    Article  PubMed  Google Scholar 

  33. van Duijl, T. T., Soonawala, D., de Fijter, J. W., Ruhaak, L. R. & Cobbaert, C. M. Rational selection of a biomarker panel targeting unmet clinical needs in kidney injury. Clin. Proteom. 18, 10 (2021).

    Article  Google Scholar 

  34. Liss, P., Nygren, A., Revsbech, N. P. & Ulfendahl, H. R. Measurements of oxygen tension in the rat kidney after contrast media using an oxygen microelectrode with a guard cathode. Adv. Exp. Med. Biol. 411, 569–576 (1997).

    Article  PubMed  CAS  Google Scholar 

  35. Palm, F. et al. Effects of the contrast medium iopromide on renal hemodynamics and oxygen tension in the diabetic rat kidney. Adv. Exp. Med. Biol. 530, 653–659 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. Pedersen, M. et al. Validation of quantitative BOLD MRI measurements in kidney: application to unilateral ureteral obstruction. Kidney Int. 67, 2305–2312 (2005).

    Article  PubMed  Google Scholar 

  37. Seeliger, E. et al. Viscosity of contrast media perturbs renal hemodynamics. J. Am. Soc. Nephrol. 18, 2912–2920 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. Nitescu, N., Grimberg, E. & Guron, G. Low-dose candesartan improves renal blood flow and kidney oxygen tension in rats with endotoxin-induced acute kidney dysfunction. Shock 30, 166–172 (2008).

    Article  PubMed  CAS  Google Scholar 

  39. Johannes, T., Ince, C., Klingel, K., Unertl, K. E. & Mik, E. G. Iloprost preserves renal oxygenation and restores kidney function in endotoxemia-related acute renal failure in the rat. Crit. Care Med. 37, 1423–1432 (2009).

    Article  PubMed  CAS  Google Scholar 

  40. Legrand, M. et al. Fluid resuscitation does not improve renal oxygenation during hemorrhagic shock in rats. Anesthesiology 112, 119–127 (2009).

    Article  Google Scholar 

  41. Seeliger, E. et al. Low-dose nitrite alleviates early effects of an x-ray contrast medium on renal hemodynamics and oxygenation in rats. Invest. Radiol. 49, 70–77 (2014).

    Article  PubMed  CAS  Google Scholar 

  42. Abdelkader, A. et al. Renal oxygenation in acute renal ischemia-reperfusion injury. Am. J. Physiol. Renal Physiol. 306, F1026–F1038 (2014).

    Article  PubMed  CAS  Google Scholar 

  43. Cantow, K., Flemming, B., Ladwig-Wiegard, M., Persson, P. B. & Seeliger, E. Low dose nitrite improves reoxygenation following renal ischemia in rats. Sci. Rep. 7, 14597–15058 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lichtenberger, F. B. et al. Activating soluble guanylyl cyclase attenuates ischemic kidney damage. Kidney Int. 107, 476–491 (2024).

    Article  PubMed  Google Scholar 

  45. Fuchs, V. R. & Sox, H. C. Jr. Physicians’ views of the relative importance of thirty medical innovations. Health Aff. 20, 30–42 (2001).

    Article  CAS  Google Scholar 

  46. van Beek, E. J. R. et al. Value of MRI in medicine: more than just another test? J. Magn. Reson. Imaging 49, e14–e25 (2019).

    PubMed  Google Scholar 

  47. O’Connor, J. P. et al. Preliminary study of oxygen-enhanced longitudinal relaxation in MRI: a potential novel biomarker of oxygenation changes in solid tumors. Int. J. Radiat. Oncol. Biol. Phys. 75, 1209–1215 (2009).

    Article  PubMed  Google Scholar 

  48. Dubec, M. J. et al. First-in-human technique translation of oxygen-enhanced MRI to an MR Linac system in patients with head and neck cancer. Radiother. Oncol. 183, 109592, (2023).

    Article  PubMed  CAS  Google Scholar 

  49. McCabe, A., Martin, S., Shah, J., Morgan, P. S. & Panek, R. T1 based oxygen-enhanced MRI in tumours; a scoping review of current research. Br. J. Radiol. 96, 20220624 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dubec, M. J. et al. Oxygen-enhanced MRI detects incidence, onset and heterogeneity of radiation-induced hypoxia modification in HPV-associated oropharyngeal cancer. Clin. Cancer Res. 30, 5620–5629 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhou, H. et al. Examining correlations of oxygen sensitive MRI (BOLD/TOLD) with [18F]FMISO PET in rat prostate tumors. Am. J. Nucl. Med. Mol. Imaging 9, 156–167 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Mason, R. P. et al. Tumor oximetry: comparison of 19F MR EPI and electrodes. Adv. Exp. Med. Biol. 530, 19–27 (2003).

    Article  PubMed  Google Scholar 

  53. Zhao, D., Jiang, L., Hahn, E. W. & Mason, R. P. Comparison of 1H blood oxygen level-dependent (BOLD) and 19F MRI to investigate tumor oxygenation. Magn. Reson. Med. 62, 357–364 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Liu, S. et al. Quantitative tissue oxygen measurement in multiple organs using 19F MRI in a rat model. Magn. Reson. Med. 66, 1722–1730 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Mason, R. P. et al. Regional tumor oxygen tension: fluorine echo planar imaging of hexafluorobenzene reveals heterogeneity of dynamics. Int. J. Radiat. Oncol. Biol. Phys. 42, 747–750 (1998).

    Article  PubMed  CAS  Google Scholar 

  56. Mason, R. P., Nunnally, R. L. & Antich, P. P. Tissue oxygenation: a novel determination using 19F surface coil NMR spectroscopy of sequestered perfluorocarbon emulsion. Magn. Reson. Med. 18, 71–79 (1991).

    Article  PubMed  CAS  Google Scholar 

  57. Chaimow, D., Yacoub, E., Ugurbil, K. & Shmuel, A. Spatial specificity of the functional MRI blood oxygenation response relative to neuronal activity. Neuroimage 164, 32–47 (2018).

    Article  PubMed  Google Scholar 

  58. Boehm-Sturm, P. et al. Phenotyping placental oxygenation in Lgals1 deficient mice using 19F MRI. Sci. Rep. 11, 2126 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Waiczies, S. et al. Functional imaging using fluorine (19F) MR methods: basic concepts. Methods Mol. Biol. 2216, 279–299 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hu, L., Pan, H. & Wickline, S. A. Fluorine (19F) MRI to measure renal oxygen tension and blood volume: experimental protocol. Methods Mol. Biol. 2216, 509–518 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 87, 9868–9872 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ogawa, S. Finding the BOLD effect in brain images. Neuroimage 62, 608–609 (2012).

    Article  PubMed  Google Scholar 

  63. Blockley, N. P., Griffeth, V. E., Simon, A. B. & Buxton, R. B. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism. NMR Biomed. 26, 987–1003 (2013).

    Article  PubMed  Google Scholar 

  64. Niendorf, T. et al. How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol. 213, 19–38 (2015).

    Article  CAS  Google Scholar 

  65. Yang, D. M. et al. Oxygen-sensitive MRI assessment of tumor response to hypoxic gas breathing challenge. NMR Biomed. 32, e4101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bane, O. et al. Consensus-based technical recommendations for clinical translation of renal BOLD MRI. MAGMA 33, 199–215 (2020).

    Article  PubMed  Google Scholar 

  67. Prasad, P. V., Li, L. P., Hack, B., Leloudas, N. & Sprague, S. M. Quantitative blood oxygenation level dependent magnetic resonance imaging for estimating intra-renal oxygen availability demonstrates kidneys are hypoxemic in human CKD. Kidney Int. Rep. 8, 1057–1067 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ebrahimi, B., Gandhi, D., Alsaeedi, M. H. & Lerman, L. O. Patterns of cortical oxygenation may predict the response to stenting in subjects with renal artery stenosis: a radiomics-based model. J. Cardiovasc. Magn. Reson. 26, 100993 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wehrli, F. W. Recent advances in MR imaging-based quantification of brain oxygen metabolism. Magn. Reson. Med. Sci. 23, 377–403 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Yablonskiy, D. A., Sukstanskii, A. L. & He, X. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties — theoretical models and experimental approaches. NMR Biomed. 26, 963–986 (2013).

    Article  PubMed  CAS  Google Scholar 

  71. He, X., Zhu, M. & Yablonskiy, D. A. Validation of oxygen extraction fraction measurement by qBOLD technique. Magn. Reson. Med. 60, 882–888 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pohlmann, A. et al. Experimental MRI monitoring of renal blood volume fraction variations en route to renal magnetic resonance oximetry. Tomography 3, 188–200 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Davis, T. L., Kwong, K. K., Weisskoff, R. M. & Rosen, B. R. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl Acad. Sci. USA 95, 1834–1839 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chiarelli, P. A., Bulte, D. P., Wise, R., Gallichan, D. & Jezzard, P. A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 37, 808–820 (2007).

    Article  PubMed  Google Scholar 

  75. Schulman, J. B., Kashyap, S., Kim, S. G. & Uludag, K. Non-invasive perfusion MR imaging of the human brain via breath-holding. Sci. Rep. 14, 7322 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Le, T. T., Im, G. H., Lee, C. H., Choi, S. H. & Kim, S. G. Mapping cerebral perfusion in mice under various anesthesia levels using highly sensitive BOLD MRI with transient hypoxia. Sci. Adv. 10, eadm7605 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lee, D., Le, T. T., Im, G. H. & Kim, S. G. Whole-brain perfusion mapping in mice by dynamic BOLD MRI with transient hypoxia. J. Cereb. Blood Flow. Metab. 42, 2270–2286 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Silvennoinen, M. J., Clingman, C. S., Golay, X., Kauppinen, R. A. & van Zijl, P. C. Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn. Reson. Med. 49, 47–60 (2003).

    Article  PubMed  CAS  Google Scholar 

  79. van Zijl, P. C. et al. Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging. Nat. Med. 4, 159–167 (1998).

    Article  PubMed  Google Scholar 

  80. Pohlmann, A., Zhao, K., Fain, S. B., Prasad, P. V. & Niendorf, T. Experimental protocol for MRI mapping of the blood oxygenation-sensitive parameters T2* and T2 in the kidney. Methods Mol. Biol. 2216, 403–417 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Dekkers, I. A. et al. Consensus-based technical recommendations for clinical translation of renal T1 and T2 mapping MRI. MAGMA 33, 163–176 (2020).

    Article  PubMed  Google Scholar 

  82. Wolf, M. et al. Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper. Nephrol. Dial. Transpl. 33, ii41–ii50 (2018).

    Article  CAS  Google Scholar 

  83. Li, H. et al. Improvements in between-vendor MRI harmonization of renal T2 mapping using stimulated echo compensation. J. Magn. Reson. Imaging 60, 2144–2155 (2024).

    PubMed  Google Scholar 

  84. Tao, Q., Zhang, Q., An, Z., Chen, Z. & Feng, Y. Multi-parametric MRI for evaluating variations in renal structure, function, and endogenous metabolites in an animal model with acute kidney injury induced by ischemia reperfusion. J. Magn. Reson. Imaging 60, 245–255 (2023).

    Article  PubMed  Google Scholar 

  85. Cantow, K. et al. Monitoring kidney size to interpret MRI-based assessment of renal oxygenation in acute pathophysiological scenarios. Acta Physiol. 237, e13868 (2023).

    Article  CAS  Google Scholar 

  86. Tasbihi, E. et al. In vivo monitoring of renal tubule volume fraction using dynamic parametric MRI. Magn. Reson. Med. 91, 2532–2545 (2024).

    Article  PubMed  CAS  Google Scholar 

  87. Zhao, K. et al. Diagnostic and prognostic performance of renal compartment volume and the apparent diffusion coefficient obtained from magnetic resonance imaging in mild, moderate and severe diabetic kidney disease. Quant. imaging Med. Surg. 13, 3973–3987 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bamberg, F. et al. Whole-body MR imaging in the German national cohort: rationale, design, and technical background. Radiology 277, 206–220 (2015).

    Article  PubMed  Google Scholar 

  89. Pohlmann, A. et al. High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury. PLoS ONE 8, e57411 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. de Boer, A. et al. 7 T renal MRI: challenges and promises. MAGMA 29, 417–433 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Simon-Zoula, S. C. et al. Non-invasive monitoring of renal oxygenation using BOLD-MRI: a reproducibility study. NMR Biomed. 19, 84–89 (2006).

    Article  PubMed  Google Scholar 

  92. Gloviczki, M. L. et al. Comparison of 1.5 and 3 T BOLD MR to study oxygenation of kidney cortex and medulla in human renovascular disease. Invest. Radiol. 44, 566–571 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Zheng, L., Yang, C., Sheng, R., Dai, Y. & Zeng, M. Renal imaging at 5 T versus 3 T: a comparison study. Insights Imaging 13, 155 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhao, K. et al. Physiological system analysis of the kidney by high-temporal-resolution T 2 * monitoring of an oxygenation step response. Magn. Reson. Med. 85, 334–345 (2021).

    Article  PubMed  CAS  Google Scholar 

  95. Oostendorp, M. et al. MRI of renal oxygenation and function after normothermic ischemia-reperfusion injury. NMR Biomed. 24, 194–200 (2011).

    Article  PubMed  Google Scholar 

  96. Pohlmann, A., Arakelyan, K., Seeliger, E. & Niendorf, T. Magnetic resonance imaging (MRI) analysis of ischemia/reperfusion in experimental acute renal injury. Methods Mol. Biol. 1397, 113–127 (2016). 113-127.

    Article  PubMed  CAS  Google Scholar 

  97. Hoff, U. et al. A synthetic epoxyeicosatrienoic acid analogue prevents the initiation of ischemic acute kidney injury. Acta Physiol. 227, e13297 (2019).

    Article  Google Scholar 

  98. Ren, Y. et al. Evaluation of renal cold ischemia-reperfusion injury with intravoxel incoherent motion diffusion-weighted imaging and blood oxygenation level-dependent MRI in a rat model. Front. Physiol. 14, 1159741 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hamelink, T. L. et al. Magnetic resonance imaging as a noninvasive adjunct to conventional assessment of functional differences between kidneys in vivo and during ex vivo normothermic machine perfusion. Am. J. Transpl. 24, 1761–1771 (2024).

    Article  CAS  Google Scholar 

  100. Mani, L. Y., Cotting, J., Vogt, B., Eisenberger, U. & Vermathen, P. Influence of immunosuppressive regimen on diffusivity and oxygenation of kidney transplants — analysis of functional MRI data from the randomized ZEUS trial. J. Clin. Med. 11, 3284 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Niendorf, T., Flemming, B., Evans, R. G. & Seeliger, E. What do BOLD MR imaging changes in donors’ remaining kidneys tell us? Radiology 281, 653–655 (2016).

    Article  PubMed  Google Scholar 

  102. Seif, M. et al. Renal blood oxygenation level-dependent imaging in longitudinal follow-up of donated and remaining kidneys. Radiology 279, 795–804 (2016).

    Article  PubMed  Google Scholar 

  103. Djamali, A. et al. Noninvasive assessment of early kidney allograft dysfunction by blood oxygen level-dependent magnetic resonance imaging. Transplantation 82, 621–628 (2006).

    Article  PubMed  Google Scholar 

  104. Arakelyan, K. et al. Early effects of an x-ray contrast medium on renal T2*/T2 MRI as compared to short-term hyperoxia, hypoxia and aortic occlusion in rats. Acta Physiol. 208, 202–213 (2013).

    Article  CAS  Google Scholar 

  105. Haneder, S. et al. Impact of iso- and low-osmolar iodinated contrast agents on BOLD and diffusion MRI in swine kidneys. Invest. Radiol. 47, 299–305 (2012).

    Article  PubMed  CAS  Google Scholar 

  106. Zhang, Y. et al. The serial effect of iodinated contrast media on renal hemodynamics and oxygenation as evaluated by ASL and BOLD MRI. Contrast Media Mol. Imaging 7, 418–425 (2012).

    Article  PubMed  CAS  Google Scholar 

  107. Li, Y. et al. The application of functional magnetic resonance imaging in type 2 diabetes rats with contrast-induced acute kidney injury and the associated innate immune response. Front. Physiol. 12, 669581 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Li, L. P. et al. Efficacy of preventive interventions for iodinated contrast-induced acute kidney injury evaluated by intrarenal oxygenation as an early marker. Invest. Radiol. 49, 647–652 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Hofmann, L. et al. BOLD-MRI for the assessment of renal oxygenation in humans: acute effect of nephrotoxic xenobiotics. Kidney Int. 70, 144–150 (2006).

    Article  PubMed  CAS  Google Scholar 

  110. Gladytz, T. et al. Reliable kidney size determination by magnetic resonance imaging in pathophysiological settings. Acta Physiol. 233, e13701 (2021).

    Article  CAS  Google Scholar 

  111. Thoeny, H. C. et al. Renal oxygenation changes during acute unilateral ureteral obstruction: assessment with blood oxygen level-dependent MR imaging — initial experience. Radiology 247, 754–761 (2008).

    Article  PubMed  Google Scholar 

  112. Wang, R. et al. Noninvasive evaluation of renal hypoxia by multiparametric functional MRI in early diabetic kidney disease. J. Magn. Reson. Imaging 55, 518–527 (2022).

    Article  PubMed  Google Scholar 

  113. Zhao, K., Seeliger, E., Niendorf, T. & Liu, Z. Noninvasive assessment of diabetic kidney disease with MRI: hype or hope? J. Magn. Reson. Imaging 59, 1494–1513 (2023).

    Article  PubMed  Google Scholar 

  114. Vinovskis, C. et al. Relative hypoxia and early diabetic kidney disease in type 1 diabetes. Diabetes 69, 2700–2708 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Feng, Y. Z. et al. Non-invasive assessment of early stage diabetic nephropathy by DTI and BOLD MRI. Br. J. Radiol. 93, 20190562 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wang, Z. J., Kumar, R., Banerjee, S. & Hsu, C. Y. Blood oxygen level-dependent (BOLD) MRI of diabetic nephropathy: preliminary experience. J. Magn. Reson. Imaging 33, 655–660 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Makvandi, K. et al. Multiparametric magnetic resonance imaging allows non-invasive functional and structural evaluation of diabetic kidney disease. Clin. Kidney J. 15, 1387–1402 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sørensen, S. S. et al. Evaluation of renal oxygenation by BOLD-MRI in high-risk patients with type 2 diabetes and matched controls. Nephrol. Dial. Transpl. 38, 691–699 (2023).

    Article  Google Scholar 

  119. Pruijm, M. et al. Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review. Nephrol. Dial. Transpl. 33, ii22–ii28 (2018).

    Article  CAS  Google Scholar 

  120. Yin, W.-J. et al. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI. Eur. J. Radiol. 81, 1426–1431 (2012).

    Article  PubMed  Google Scholar 

  121. Zheng, S. S., He, Y. M. & Lu, J. Noninvasive evaluation of diabetic patients with high fasting blood glucose using DWI and BOLD MRI. Abdom. Radiol. 46, 1659–1669 (2021).

    Article  CAS  Google Scholar 

  122. Wang, Q. et al. BOLD MRI to evaluate early development of renal injury in a rat model of diabetes. J. Int. Med. Res. 46, 1391–1403 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Michaely, H. J. et al. Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int. 81, 684–689 (2012).

    Article  PubMed  CAS  Google Scholar 

  124. Pruijm, M. et al. Determinants of renal tissue oxygenation as measured with BOLD-MRI in chronic kidney disease and hypertension in humans. PLoS ONE 9, e95895 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Milani, B. et al. Reduction of cortical oxygenation in chronic kidney disease: evidence obtained with a new analysis method of blood oxygenation level-dependent magnetic resonance imaging. Nephrol. Dial. Transpl. 32, 2097–2105 (2017).

    CAS  Google Scholar 

  126. Fine, L. G. & Dharmakumar, R. Limitations of BOLD-MRI for assessment of hypoxia in chronically diseased human kidneys. Kidney Int. 82, 934–935 (2012).

    Article  PubMed  Google Scholar 

  127. Prasad, P. V. et al. Multi-parametric evaluation of chronic kidney disease by MRI: a preliminary cross-sectional study. PLoS ONE 10, e0139661 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Pruijm, M. et al. Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease. Kidney Int. 93, 932–940 (2018).

    Article  PubMed  Google Scholar 

  129. Gloviczki, M. L. et al. Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis. Hypertension 55, 961–966 (2010).

    Article  PubMed  CAS  Google Scholar 

  130. Pruijm, M., Milani, B. & Burnier, M. Blood oxygenation level-dependent MRI to assess renal oxygenation in renal diseases: progresses and challenges. Front. Physiol. 7, 667 (2016).

    PubMed  Google Scholar 

  131. Gloviczki, M. L., Saad, A. & Textor, S. C. Blood oxygen level-dependent (BOLD) MRI analysis in atherosclerotic renal artery stenosis. Curr. Opin. Nephrol. Hypertens. 22, 519–524 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Rognant, N. et al. Evolution of renal oxygen content measured by BOLD MRI downstream a chronic renal artery stenosis. Nephrol. Dial. Transpl. 26, 1205–1210 (2011).

    Article  Google Scholar 

  133. Tonneijck, L. et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 28, 1023 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. van der Weijden, J. et al. Early increase in single-kidney glomerular filtration rate after living kidney donation predicts long-term kidney function. Kidney Int. 101, 1251–1259 (2022).

    Article  PubMed  Google Scholar 

  135. Naas, S., Schiffer, M. & Schödel, J. Hypoxia and renal fibrosis. Am. J. Physiol. Cell Physiol. 325, C999–C1016 (2023).

    Article  PubMed  CAS  Google Scholar 

  136. Kitai, Y., Nangaku, M. & Yanagita, M. Aging-related kidney diseases. Contrib. Nephrol. 199, 266–273 (2021).

    Article  PubMed  CAS  Google Scholar 

  137. O’Sullivan, E. D., Hughes, J. & Ferenbach, D. A. Renal aging: causes and consequences. J. Am. Soc. Nephrol. 28, 407–420 (2017).

    Article  PubMed  Google Scholar 

  138. Pruijm, M., Milani, B., Lacoh, C., Stuber, M. & Burnier, M. Reduced renal tissue oxygenation with aging in men, but not in woman. J. Hypertens. 35, e42 (2017).

    Article  Google Scholar 

  139. Prasad, P. V. & Epstein, F. H. Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. Kidney Int. 55, 294–298 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Epstein, F. H. & Prasad, P. Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int. 57, 2080–2083 (2000).

    Article  PubMed  CAS  Google Scholar 

  141. Haddock, B., Larsson, H. B. W., Francis, S. & Andersen, U. B. Human renal response to furosemide: simultaneous oxygenation and perfusion measurements in cortex and medulla. Acta Physiol. 227, e13292 (2019).

    Article  Google Scholar 

  142. Zhang, J. L. et al. Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling. Am. J. Physiol. Renal Physiol. 306, F579–F587 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Lal, H. et al. Role of blood oxygen level-dependent magnetic resonance imaging in studying renal oxygenation changes in renal artery stenosis. Abdom. Radiol. 47, 1112–1123 (2022).

    Article  Google Scholar 

  144. Hall, M. E. et al. Chronic diuretic therapy attenuates renal BOLD magnetic resonance response to an acute furosemide stimulus. J. Cardiovasc. Magn. Reson. 16:17, 17–16 (2014).

    Article  Google Scholar 

  145. Boss, A. et al. Influence of oxygen and carbogen breathing on renal oxygenation measured by T2*-weighted imaging at 3.0 T. NMR Biomed. 22, 638–645 (2009).

    Article  PubMed  CAS  Google Scholar 

  146. Donati, O. F., Nanz, D., Serra, A. L. & Boss, A. Quantitative BOLD response of the renal medulla to hyperoxic challenge at 1.5 T and 3.0 T. NMR Biomed. 25, 1133–1138 (2012).

    Article  PubMed  Google Scholar 

  147. Cantow, K., Arakelyan, K., Seeliger, E., Niendorf, T. & Pohlmann, A. Assessment of renal hemodynamics and oxygenation by simultaneous magnetic resonance imaging (MRI) and quantitative invasive physiological measurements. Methods Mol. Biol. 1397, 129–154 (2016).

    Article  PubMed  CAS  Google Scholar 

  148. Pohlmann, A. et al. Detailing the relation between renal T2* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements. Invest. Radiol. 49, 547–560 (2014).

    Article  PubMed  CAS  Google Scholar 

  149. Pohlmann, A. et al. Linking non-invasive parametric MRI with invasive physiological measurements (MR-PHYSIOL): towards a hybrid and integrated approach for investigation of acute kidney injury in rats. Acta Physiol. 207, 673–689 (2012).

    Article  Google Scholar 

  150. Schurek, H. J. [Kidney medullary hypoxia: a key to understanding acute renal failure?]. Klin. Wochenschr. 66, 828–835X (1988).

    Article  PubMed  CAS  Google Scholar 

  151. Baumgartl, H., Leichtweiss, H. P., Lubbers, D. W., Weiss, C. & Huland, H. The oxygen supply of the dog kidney: measurements of intrarenal pO 2. Microvasc. Res 4, 247–257 (1972).

    Article  PubMed  CAS  Google Scholar 

  152. Lubbers, D. W. & Baumgartl, H. Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the pO2 distribution in the living tissue. Kidney Int. 51, 372–380 (1997).

    Article  PubMed  CAS  Google Scholar 

  153. Pitts, R. F. in Physiology of the Kidney and Body Fluids (ed. Pitts, R. F.) 1–10 (Year Book Medical Publishers, 1974).

  154. Edwards, A., Silldforff, E. P. & Pallone, T. L. The renal medullary microcirculation. Front. Biosci. 5, E36–E52 (2000).

    Article  PubMed  CAS  Google Scholar 

  155. Zimmerhackl, B. L., Robertson, C. R. & Jamison, R. L. The medullary microcirculation. Kidney Int. 31, 641–647 (1987).

    Article  PubMed  CAS  Google Scholar 

  156. Niendorf, T. et al. Probing renal blood volume with magnetic resonance imaging. Acta Physiol. 228, e13435 (2020).

    Article  CAS  Google Scholar 

  157. Knepper, M. A., Danielson, R. A., Saidel, G. M. & Post, R. S. Quantitative analysis of renal medullary anatomy in rats and rabbits. Kidney Int. 12, 313–323 (1977).

    Article  PubMed  CAS  Google Scholar 

  158. Pagtalunan, M. E., Olson, J. L., Tilney, N. L. & Meyer, T. W. Late consequences of acute ischemic injury to a solitary kidney. J. Am. Soc. Nephrol. 10, 366–373 (1999).

    Article  PubMed  CAS  Google Scholar 

  159. Anders, H.-J., Kitching, A. R., Leung, N. & Romagnani, P. Glomerulonephritis: immunopathogenesis and immunotherapy. Nat. Rev. Immunol. 23, 453–471 (2023).

    Article  PubMed  CAS  Google Scholar 

  160. Cao, J. et al. Comparison of renal artery vs renal artery-vein clamping during partial nephrectomy: a system review and meta-analysis. J. Endourol. 34, 523–530 (2020).

    Article  PubMed  Google Scholar 

  161. Chadban, S. J. & Atkins, R. C. Glomerulonephritis. Lancet 365, 1797–1806 (2005).

    Article  PubMed  CAS  Google Scholar 

  162. Haase, M. et al. Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol. Dial. Transplant. 27, 153–160 (2012).

    Article  PubMed  CAS  Google Scholar 

  163. Jongkind, V. et al. Juxtarenal aortic aneurysm repair. J. Vasc. Surg. 52, 760–767 (2010).

    Article  PubMed  Google Scholar 

  164. Kellum, J. A. & Prowle, J. R. Paradigms of acute kidney injury in the intensive care setting. Nat. Rev. Nephrol. 14, 217–230 (2018).

    Article  PubMed  Google Scholar 

  165. Roumelioti, M.-E. et al. Principles of quantitative water and electrolyte replacement of losses from osmotic diuresis. Int. Urol. Nephrol. 50, 1263–1270 (2018).

    Article  PubMed  CAS  Google Scholar 

  166. Chung, K. J. et al. Changing trends in the treatment of nephrolithiasis in the real world. J. Endourol. 33, 248–253 (2019).

    Article  PubMed  Google Scholar 

  167. Huang, S.-W. et al. Comparative efficacy and safety of new surgical treatments for benign prostatic hyperplasia: systematic review and network meta-analysis. BMJ 367, l5919 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Preminger, G. M. Urinary tract obstruction. MSD Manual https://www.msdmanuals.com/professional/genitourinary-disorders/obstructive-uropathy/obstructive-uropathy (accessed 2025).

  169. Tokas, T. et al. Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World J. Urol. 37, 125–131 (2019).

    Article  PubMed  Google Scholar 

  170. Klein, T. et al. Dynamic parametric MRI and deep learning: unveiling renal pathophysiology through accurate kidney size quantification. NMR Biomed. 37, e5075 (2024).

    Article  PubMed  CAS  Google Scholar 

  171. Cantow, K. et al. Reversible (Patho)physiologically relevant test interventions: rationale and examples. Methods Mol. Biol. 2216, 57–73 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Herrler, T. et al. The intrinsic renal compartment syndrome: new perspectives in kidney transplantation. Transplantation 89, 40–46 (2010).

    Article  PubMed  Google Scholar 

  173. Storey, P., Ji, L., Li, L. P. & Prasad, P. V. Sensitivity of USPIO-enhanced R2 imaging to dynamic blood volume changes in the rat kidney. J. Magn. Reson. Imaging 33, 1091–1099 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Cho, J. M. et al. Associations of MRI-derived kidney volume, kidney function, body composition and physical performance in approximately 38 000 UK Biobank participants: a population-based observational study. Clin. Kidney J. 17, sfae068 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Kellner, E. et al. Imaging markers from population-wide, MRI-based automated kidney segmentation-an analysis of data from the German national cohort (NAKO Gesundheitsstudie). Deutsches Arzteblatt International https://doi.org/10.3238/arztebl.m2024.0040 (2024).

  176. Tsushima, Y., Blomley, M. J., Kusano, S. & Endo, K. Use of contrast-enhanced computed tomography to measure clearance per unit renal volume: a novel measurement of renal function and fractional vascular volume. Am. J. Kidney Dis. 33, 754–760 (1999).

    Article  PubMed  CAS  Google Scholar 

  177. Cantow, K. et al. Acute effects of ferumoxytol on regulation of renal hemodynamics and oxygenation. Sci. Rep. 6, 29965 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Bashir, M. R., Bhatti, L., Marin, D. & Nelson, R. C. Emerging applications for ferumoxytol as a contrast agent in MRI. J. Magn. Reson. Imaging 41, 884–898 (2015).

    Article  PubMed  Google Scholar 

  179. Hope, M. D. et al. Vascular imaging with ferumoxytol as a contrast agent. AJR Am. J. Roentgenol. 205, W366–W373 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Budjan, J. et al. Can ferumoxytol be used as a contrast agent to differentiate between acute and chronic inflammatory kidney disease?: feasibility study in a rat model. Invest. Radiol. 51, 100–105 (2016).

    Article  PubMed  CAS  Google Scholar 

  181. Huang, Y., Hsu, J. C., Koo, H. & Cormode, D. P. Repurposing ferumoxytol: diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics 12, 796–816 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Villa, G. et al. Phase-contrast magnetic resonance imaging to assess renal perfusion: a systematic review and statement paper. MAGMA 33, 3–21 (2020).

    Article  PubMed  Google Scholar 

  183. de Boer, A. et al. Consensus-based technical recommendations for clinical translation of renal phase contrast MRI. J. Magn. Reson. Imaging 55, 323–335. (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Taso, M. et al. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain. Magn. Reson. Med. 89, 1754–1776 (2023).

    Article  PubMed  Google Scholar 

  185. Nery, F. et al. Consensus-based technical recommendations for clinical translation of renal ASL MRI. MAGMA 33, 141–161 (2020).

    Article  PubMed  Google Scholar 

  186. Zollner, F. G. et al. Analysis protocol for dynamic contrast enhanced (DCE) MRI of renal perfusion and filtration. Methods Mol. Biol. 2216, 637–653 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Irrera, P. et al. Dynamic contrast enhanced (DCE) MRI-derived renal perfusion and filtration: experimental protocol. Methods Mol. Biol. 2216, 429–441 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Pedersen, M. et al. Dynamic contrast enhancement (DCE) MRI-derived renal perfusion and filtration: basic concepts. Methods Mol. Biol. 2216, 205–227 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Alhummiany, B., Sharma, K., Buckley, D. L., Soe, K. K. & Sourbron, S. P. Physiological confounders of renal blood flow measurement. MAGMA 37, 565–582 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Stabinska, J., Wittsack, H. J., Lerman, L. O., Ljimani, A. & Sigmund, E. E. Probing renal microstructure and function with advanced diffusion MRI: concepts, applications, challenges, and future directions. J. Magn. Reson. Imaging 60, 1259–1277 (2023).

    Article  PubMed  Google Scholar 

  191. van Baalen, S. et al. Intravoxel incoherent motion modeling in the kidneys: comparison of mono-, bi-, and triexponential fit. J. Magn. Reson. Imaging 46, 228–239 (2017).

    Article  PubMed  Google Scholar 

  192. van der Bel, R. et al. A tri-exponential model for intravoxel incoherent motion analysis of the human kidney: in silico and during pharmacological renal perfusion modulation. Eur. J. Radiol. 91, 168–174 (2017).

    Article  PubMed  Google Scholar 

  193. Niendorf, T., Dijkhuizen, R. M., Norris, D. G., van Lookeren Campagne, M. & Nicolay, K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn. Reson. Med. 36, 847–857 (1996).

    Article  PubMed  CAS  Google Scholar 

  194. Whittall, K. P. & MacKay, A. L. Quantitative interpretation of NMR relaxation data. J. Magn. Reson. 84, 14 (1989).

    Google Scholar 

  195. Bjarnason, T. A. & Mitchell, J. R. AnalyzeNNLS: magnetic resonance multiexponential decay image analysis. J. Magn. Reson. 206, 200–204 (2010).

    Article  PubMed  CAS  Google Scholar 

  196. Wiggermann, V. et al. Non-negative least squares computation for in vivo myelin mapping using simulated multi-echo spin-echo T2 decay data. NMR Biomed. 33, e4277 (2020).

    Article  PubMed  CAS  Google Scholar 

  197. Periquito, J. S. et al. Continuous diffusion spectrum computation for diffusion-weighted magnetic resonance imaging of the kidney tubule system. Quant. Imaging Med. Surg. 11, 3098–3119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Ferguson, C. M. et al. Renal fibrosis detected by diffusion-weighted magnetic resonance imaging remains unchanged despite treatment in subjects with renovascular disease. Sci. Rep. 10, 16300 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Hysi, E. & Yuen, D. A. Imaging of renal fibrosis. Curr. Opin. Nephrol. Hypertens. 29, 599–607 (2020).

    Article  PubMed  Google Scholar 

  200. Stabinska, J. et al. Spectral diffusion analysis of kidney intravoxel incoherent motion MRI in healthy volunteers and patients with renal pathologies. Magn. Reson. Med. 85, 3085–3095 (2021).

    Article  PubMed  CAS  Google Scholar 

  201. Mendichovszky, I. et al. Technical recommendations for clinical translation of renal MRI: a consensus project of the Cooperation in Science and Technology Action PARENCHIMA. MAGMA 33, 131–140 (2020).

    Article  PubMed  CAS  Google Scholar 

  202. Westwood, M. A. & Pennell, D. J. Reducing mortality by myocardial T2* cardiovascular magnetic resonance at national level. Eur. Heart J. 43, 2493–2495 (2022).

    Article  PubMed  Google Scholar 

  203. Niendorf, T. et al. MRI of kidney size matters. MAGMA 37, 651–669 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Ma, J. et al. Segment anything in medical images. Nat. Commun. 15, 654 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Ali, M. et al. A review of the segment anything model (SAM) for medical image analysis: accomplishments and perspectives. Comput. Med. Imaging Graph. 119, 102473 (2025).

    Article  PubMed  Google Scholar 

  206. Herrmann, C. J. J. et al. Accelerated simultaneous T2 and T2* mapping of multiple sclerosis lesions using compressed sensing reconstruction of radial RARE-EPI MRI. Tomography 9, 299–314 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Li, H. et al. Fast and high-resolution T2 mapping based on echo merging plus k-t undersampling with reduced refocusing flip angles (TEMPURA) as methods for human renal MRI. Magn. Reson. Med. 92, 1138–1148 (2024).

    Article  PubMed  CAS  Google Scholar 

  208. Er, F. et al. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial). Circulation 126, 296–303 (2012).

    Article  PubMed  CAS  Google Scholar 

  209. Alreja, G., Bugano, D. & Lotfi, A. Effect of remote ischemic preconditioning on myocardial and renal injury: meta-analysis of randomized controlled trials. J. Invasive Cardiol. 24, 42–48 (2012).

    PubMed  Google Scholar 

  210. Li, L. P. et al. Renal BOLD MRI in patients with chronic kidney disease: comparison of the semi-automated twelve layer concentric objects (TLCO) and manual ROI methods. MAGMA 33, 113–120 (2020).

    Article  PubMed  Google Scholar 

  211. Zhang, X. et al. Evaluation of renal oxygenation and perfusion in patients with chronic kidney disease: a preliminary prospective study based on functional magnetic resonance. Ren. Fail. 46, 2428337 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Chen, X. et al. Evaluation of early renal changes in type 2 diabetes mellitus using multiparametric MR imaging. Magn. Reson. Med. Sci., https://doi.org/10.2463/mrms.mp.2023-0148 (2024).

    Article  PubMed  Google Scholar 

  213. Zhang, C. et al. Correlation between functional magnetic resonance imaging and renal tubular injury markers in early assessment of renal tubular injury in type 2 diabetes mellitus. Altern. Ther. Health Med. 30, 235–243 (2024).

    PubMed  Google Scholar 

  214. Sullivan, D. C. et al. Metrology standards for quantitative imaging biomarkers. Radiology 277, 813–825 (2015).

    Article  PubMed  Google Scholar 

  215. Evans, R. G., Gardiner, B. S., Smith, D. W. & O’Connor, P. M. Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am. J. Physiol. Renal Physiol. 295, 1259–1270 (2008).

    Article  Google Scholar 

  216. Grosenick, D. et al. Detailing renal hemodynamics and oxygenation in rats by a combined near-infrared spectroscopy and invasive probe approach. Biomed. Opt. Express 6, 309–323 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank B. Flemming (Institute of Translational Physiology, Charité — Universitätsmedizin, Berlin, Germany) for his mentorship and inspiration and J. Hentschel, T. Hülnhagen, T. Klein, J. Periquito, A. Pohlmann, P. Ramos Delgado, H. Reimann, L. Starke, E. Tasbihi, J. R. Velasques Vides (Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany), K. Zhao (Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany and Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China), D. Grosenick (Physikalisch-Technische Bundesanstalt, Berlin, Germany) and A. Anger, K. Arakelyan, L. Hummel (Institute of Translational Physiology, Charité — Universitätsmedizin, Berlin, Germany) for assistance, fruitful discussion and other support. They also wish to thank P. V. Prasad (Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA and Pritzker School of Medicine, University of Chicago, Chicago, IL, USA) and J. Stabinska (F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA and Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA) for sharing their results highlighted in Fig. 6c,d and in Fig. 7b. They also thank the Helmholtz International Research School iNAMES (Imaging and Data Science from the Nano to the MESo).

Author information

Authors and Affiliations

Authors

Contributions

T.N. and E.S. wrote the article. All authors researched data for the article, contributed substantially to discussion of the content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Thoralf Niendorf.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Ilona A. Dekkers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niendorf, T., Gladytz, T., Cantow, K. et al. Magnetic resonance imaging of renal oxygenation. Nat Rev Nephrol 21, 483–502 (2025). https://doi.org/10.1038/s41581-025-00956-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-025-00956-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing