Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fluid biomarkers of chronic traumatic brain injury

Abstract

Traumatic brain injury (TBI) is a leading cause of long-term disability across the world. Evidence for the usefulness of imaging and fluid biomarkers to predict outcomes and screen for the need to monitor complications in the acute stage is steadily increasing. Still, many people experience symptoms such as fatigue and cognitive and motor dysfunction in the chronic phase of TBI, where objective assessments for brain injury are lacking. Consensus criteria for traumatic encephalopathy syndrome, a clinical syndrome possibly associated with the neurodegenerative disease chronic traumatic encephalopathy, which is commonly associated with sports concussion, have been defined only recently. However, these criteria do not fit all individuals living with chronic consequences of TBI. The pathophysiology of chronic TBI shares many similarities with other neurodegenerative and neuroinflammatory conditions, such as Alzheimer disease. As with Alzheimer disease, advancements in fluid biomarkers represent one of the most promising paths for unravelling the chain of pathophysiological events to enable discrimination between these conditions and, with time, provide prediction modelling and therapeutic end points. This Review summarizes fluid biomarker findings in the chronic phase of TBI (≥6 months after injury) that demonstrate the involvement of inflammation, glial biology and neurodegeneration in the long-term complications of TBI. We explore how the biomarkers associate with outcome and imaging findings and aim to establish mechanistic differences in biomarker patterns between types of chronic TBI and other neurodegenerative conditions. Finally, current limitations and areas of priority for future fluid biomarker research are highlighted.

Key points

  • Many people live with chronic symptoms following traumatic brain injury (TBI), with an increased risk of developing neurodegenerative conditions.

  • The current definitions of chronic TBI do not cover all aspects of the disease, and biomarkers of neurodegeneration and neuroinflammation have not been included in the diagnostic criteria.

  • Neurofilament light and glial fibrillary acidic protein remain elevated in blood years after brain injury, and elevated tau protein is seen in people with chronic TBI who are developing neurodegenerative conditions.

  • Autoantibodies towards brain-enriched proteins are elevated in blood in both the acute and chronic phases of TBI and are associated with levels of neurodegenerative proteins.

  • Considering the heterogeneity of the existing literature, improved grading of chronic TBI symptomatology and better biomarker sampling strategies are warranted to advance current criteria and guidelines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic figure of neurodegenerative disease, associated symptoms and potential fluid biomarkers in chronic traumatic brain injury1,25,29,118.
Fig. 2: Biomarker dynamics over time in blood, illustrated as arbitrary biomarker levels (y axis) over time (x axis) (as seen in Tables 1 and 2).

Similar content being viewed by others

References

  1. Maas, A. I. R. et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 16, 987–1048 (2017).

    Article  PubMed  Google Scholar 

  2. Dewan, M. C. et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 130, 1080–1097 (2018).

    Article  PubMed  Google Scholar 

  3. Brazinova, A. et al. Epidemiology of traumatic brain injury in Europe: a living systematic review. J. Neurotrauma 38, 1411–1440 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rubiano, A. M., Carney, N., Chesnut, R. & Puyana, J. C. Global neurotrauma research challenges and opportunities. Nature 527, S193–S197 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Li, Y. et al. Head injury as a risk factor for dementia and Alzheimer’s disease: a systematic review and meta-analysis of 32 observational studies. PLoS ONE 12, e0169650 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Balabandian, M., Noori, M., Lak, B., Karimizadeh, Z. & Nabizadeh, F. Traumatic brain injury and risk of Parkinson’s disease: a meta-analysis. Acta Neurol. Belg. 123, 1225–1239 (2023).

    PubMed  Google Scholar 

  7. Watanabe, Y. & Watanabe, T. Meta-analytic evaluation of the association between head injury and risk of amyotrophic lateral sclerosis. Eur. J. Epidemiol. 32, 867–879 (2017).

    Article  PubMed  Google Scholar 

  8. Lunny, C. A., Fraser, S. N. & Knopp-Sihota, J. A. Physical trauma and risk of multiple sclerosis: a systematic review and meta-analysis of observational studies. J. Neurol. Sci. 336, 13–23 (2014).

    Article  PubMed  Google Scholar 

  9. Wang, K. K. et al. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev. Mol. Diagn. 18, 165–180 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Edalatfar, M. et al. Biofluid biomarkers in traumatic brain injury: a systematic scoping review. Neurocrit. Care 35, 559–572 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Tabor, J. B. et al. Role of biomarkers and emerging technologies in defining and assessing neurobiological recovery after sport-related concussion: a systematic review. Br. J. Sports Med. 57, 789–797 (2023).

    Article  PubMed  Google Scholar 

  12. Hossain, I., Marklund, N., Czeiter, E., Hutchinson, P. & Buki, A. Blood biomarkers for traumatic brain injury: a narrative review of current evidence. Brain Spine 4, 102735 (2024).

    Article  PubMed  Google Scholar 

  13. Pierre, K. et al. Chronic traumatic encephalopathy: diagnostic updates and advances. AIMS Neurosci. 9, 519–535 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. McKee, A. C. et al. The spectrum of disease in chronic traumatic encephalopathy. Brain 136, 43–64 (2013).

    Article  PubMed  Google Scholar 

  15. McKee, A. C. et al. Chronic traumatic encephalopathy (CTE): criteria for neuropathological diagnosis and relationship to repetitive head impacts. Acta Neuropathol. 145, 371–394 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Katz, D. I. et al. National Institute of Neurological Disorders and Stroke Consensus Diagnostic Criteria for traumatic encephalopathy syndrome. Neurology 96, 848–863 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cullum, C. M. & LoBue, C. Defining traumatic encephalopathy syndrome — advances and challenges. Nat. Rev. Neurol. 17, 331–332 (2021).

    Article  PubMed  Google Scholar 

  18. Iverson, G. L., Keene, C. D., Perry, G. & Castellani, R. J. The need to separate chronic traumatic encephalopathy neuropathology from clinical features. J. Alzheimers Dis. 61, 17–28 (2018).

    Article  PubMed  Google Scholar 

  19. Stern, R. A. et al. Tau positron-emission tomography in former national football league players. N. Engl. J. Med. 380, 1716–1725 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bieniek, K. F. et al. Chronic traumatic encephalopathy pathology in a neurodegenerative disorders brain bank. Acta Neuropathol. 130, 877–889 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shively, S., Scher, A. I., Perl, D. P. & Diaz-Arrastia, R. Dementia resulting from traumatic brain injury: what is the pathology? Arch. Neurol. 69, 1245–1251 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. McKee, A. C. et al. Neuropathologic and clinical findings in young contact sport athletes exposed to repetitive head impacts. JAMA Neurol. 80, 1037–1050 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fesharaki-Zadeh, A. Chronic traumatic encephalopathy: a brief overview. Front. Neurol. 10, 713 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jankovic, T. & Pilipovic, K. Single versus repetitive traumatic brain injury: current knowledge on the chronic outcomes, neuropathology and the role of TDP-43 proteinopathy. Exp. Neurobiol. 32, 195–215 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Postolache, T. T. et al. Inflammation in traumatic brain injury. J. Alzheimers Dis. 74, 1–28 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Randolph, C. Chronic traumatic encephalopathy is not a real disease. Arch. Clin. Neuropsychol. 33, 644–648 (2018).

    Article  PubMed  Google Scholar 

  27. Iverson, G. L. & Gardner, A. J. Symptoms of traumatic encephalopathy syndrome are common in the US general population. Brain Commun. 3, fcab001 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Iverson, G. L. Retired national football league players are not at greater risk for suicide. Arch. Clin. Neuropsychol. 35, 332–341 (2020).

    Article  PubMed  Google Scholar 

  29. Graham, N. S. & Sharp, D. J. Understanding neurodegeneration after traumatic brain injury: from mechanisms to clinical trials in dementia. J. Neurol. Neurosurg. Psychiatry 90, 1221–1233 (2019).

    Article  PubMed  Google Scholar 

  30. Gilbert, M. et al. The association of traumatic brain injury with rate of progression of cognitive and functional impairment in a population-based cohort of Alzheimer’s disease: the Cache County Dementia Progression Study. Int. Psychogeriatr. 26, 1593–1601 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fann, J. R. et al. Long-term risk of dementia among people with traumatic brain injury in Denmark: a population-based observational cohort study. Lancet Psychiatry 5, 424–431 (2018).

    Article  PubMed  Google Scholar 

  32. Mackay, D. F. et al. Neurodegenerative disease mortality among former professional soccer players. N. Engl. J. Med. 381, 1801–1808 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Russell, E. R. et al. Neurodegenerative disease risk among former international rugby union players. J. Neurol. Neurosurg. Psychiatry 93, 1262–1268 (2022).

    Article  PubMed  Google Scholar 

  34. Johnson, V. E., Stewart, W., Trojanowski, J. Q. & Smith, D. H. Acute and chronically increased immunoreactivity to phosphorylation-independent but not pathological TDP-43 after a single traumatic brain injury in humans. Acta Neuropathol. 122, 715–726 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hay, J. R., Johnson, V. E., Young, A. M., Smith, D. H. & Stewart, W. Blood–brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J. Neuropathol. Exp. Neurol. 74, 1147–1157 (2015).

    CAS  PubMed  Google Scholar 

  36. Johnson, V. E., Stewart, W. & Smith, D. H. Traumatic brain injury and amyloid-beta pathology: a link to Alzheimer’s disease? Nat. Rev. Neurosci. 11, 361–370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, X. H., Johnson, V. E., Uryu, K., Trojanowski, J. Q. & Smith, D. H. A lack of amyloid beta plaques despite persistent accumulation of amyloid beta in axons of long-term survivors of traumatic brain injury. Brain Pathol. 19, 214–223 (2009).

    Article  PubMed  Google Scholar 

  38. Bazarian, J. J. et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. Lancet Neurol. 17, 782–789 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Lindblad, C. et al. Fluid proteomics of CSF and serum reveal important neuroinflammatory proteins in blood–brain barrier disruption and outcome prediction following severe traumatic brain injury: a prospective, observational study. Crit. Care 25, 103 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zetterberg, H., Smith, D. H. & Blennow, K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat. Rev. Neurol. 9, 201–210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khalil, M. et al. Neurofilaments as biomarkers in neurological disorders — towards clinical application. Nat. Rev. Neurol. 20, 269–287 (2024).

    Article  PubMed  Google Scholar 

  42. Cooper, J. G. et al. Age specific reference intervals for plasma biomarkers of neurodegeneration and neurotrauma in a Canadian population. Clin. Biochem. 121122, 110680 (2023).

    Article  PubMed  Google Scholar 

  43. Wang, K. K. W. et al. Parallel cerebrospinal fluid and serum temporal profile assessment of axonal injury biomarkers neurofilament-light chain and phosphorylated neurofilament-heavy chain: associations with patient outcome in moderate-severe traumatic brain injury. J. Neurotrauma 41, 1609–1627 (2024).

    Article  PubMed  Google Scholar 

  44. Graham, N. S. N. et al. Axonal marker neurofilament light predicts long-term outcomes and progressive neurodegeneration after traumatic brain injury. Sci. Transl. Med. 13, eabg9922 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Needham, E. J. et al. Complex autoantibody responses occur following moderate to severe traumatic brain injury. J. Immunol. 207, 90–100 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Newcombe, V. F. J. et al. Post-acute blood biomarkers and disease progression in traumatic brain injury. Brain 145, 2064–2076 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Taghdiri, F. et al. Neurofilament-light in former athletes: a potential biomarker of neurodegeneration and progression. Eur. J. Neurol. 27, 1170–1177 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Shahim, P. et al. Neurochemical aftermath of repetitive mild traumatic brain injury. JAMA Neurol. 73, 1308–1315 (2016).

    Article  PubMed  Google Scholar 

  49. Preische, O. et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat. Med. 25, 277–283 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guedes, V. A. et al. Exosomal neurofilament light: a prognostic biomarker for remote symptoms after mild traumatic brain injury? Neurology 94, e2412–e2423 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Guedes, V. A. et al. Extracellular vesicle proteins and microRNAs are linked to chronic post-traumatic stress disorder symptoms in service members and veterans with mild traumatic brain injury. Front. Pharmacol. 12, 745348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Flynn, S. et al. Extracellular vesicle concentrations of glial fibrillary acidic protein and neurofilament light measured 1 year after traumatic brain injury. Sci. Rep. 11, 3896 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schraen-Maschke, S. et al. Tau as a biomarker of neurodegenerative diseases. Biomark. Med. 2, 363–384 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Alonso, A. D., Grundke-Iqbal, I., Barra, H. S. & Iqbal, K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc. Natl Acad. Sci. USA 94, 298–303 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mielke, M. M. et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement. 14, 989–997 (2018).

    Article  PubMed  Google Scholar 

  56. Palmqvist, S. et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA 324, 772–781, (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Ashton, N. J. et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 141, 709–724 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Blennow, K. et al. Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol. Chem. Neuropathol. 26, 231–245 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Coban, H., Nadella, P., Tu, D., Shinohara, R. & Berger, J. R. Total tau level in cerebrospinal fluid as a predictor of survival in Creutzfeldt–Jakob disease: a retrospective analysis. Neurol. Clin. Pract. 13, e200161 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. McKee, A. C., Stein, T. D., Kiernan, P. T. & Alvarez, V. E. The neuropathology of chronic traumatic encephalopathy. Brain Pathol. 25, 350–364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Turk, K. W. et al. A comparison between tau and amyloid-beta cerebrospinal fluid biomarkers in chronic traumatic encephalopathy and Alzheimer disease. Alzheimers Res. Ther. 14, 28 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Asken, B. M. et al. Plasma P-tau181 and P-tau217 in patients with traumatic encephalopathy syndrome with and without evidence of Alzheimer disease pathology. Neurology 99, e594–e604 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vasilevskaya, A. et al. Investigating the use of plasma pTau181 in retired contact sports athletes. J. Neurol. 269, 5582–5595 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Goetzl, E. J., Peltz, C. B., Mustapic, M., Kapogiannis, D. & Yaffe, K. Neuron-derived plasma exosome proteins after remote traumatic brain injury. J. Neurotrauma 37, 382–388 (2020).

    Article  PubMed  Google Scholar 

  65. Pattinson, C. L. et al. Elevated tau in military personnel relates to chronic symptoms following traumatic brain injury. J. Head Trauma Rehabil. 35, 66–73 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fischer, I. & Baas, P. W. Resurrecting the mysteries of big tau. Trends Neurosci. 43, 493–504 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Laverse, E. et al. Plasma glial fibrillary acidic protein and neurofilament light chain, but not tau, are biomarkers of sports-related mild traumatic brain injury. Brain Commun. 2, fcaa137 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gonzalez-Ortiz, F. et al. Association of serum brain-derived tau with clinical outcome and longitudinal change in patients with severe traumatic brain injury. JAMA Netw. Open 6, e2321554 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Stern, R. A. et al. Preliminary study of plasma exosomal tau as a potential biomarker for chronic traumatic encephalopathy. J. Alzheimers Dis. 51, 1099–1109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Peltz, C. B. et al. Blood biomarkers of traumatic brain injury and cognitive impairment in older veterans. Neurology 95, e1126–e1133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ramos-Cejudo, J. et al. Traumatic brain injury and Alzheimer’s disease: the cerebrovascular link. eBioMedicine 28, 21–30 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rostowsky, K. A., Irimia, A. & Alzheimer’s Disease Neuroimaging Initiative. Acute cognitive impairment after traumatic brain injury predicts the occurrence of brain atrophy patterns similar to those observed in Alzheimer’s disease. Geroscience 43, 2015–2039 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Blennow, K. A review of fluid biomarkers for Alzheimer’s disease: moving from CSF to blood. Neurol. Ther. 6, 15–24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Xu, C., Zhao, L. & Dong, C. A review of application of Aβ42/40 ratio in diagnosis and prognosis of Alzheimer’s disease. J. Alzheimers Dis. 90, 495–512 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Eng, L. F., Ghirnikar, R. S. & Lee, Y. L. Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem. Res. 25, 1439–1451 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Liedtke, W. et al. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17, 607–615 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Munoz-Ballester, C. & Robel, S. Astrocyte-mediated mechanisms contribute to traumatic brain injury pathology. WIREs Mech. Dis. 15, e1622 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Benedet, A. L. et al. Differences between plasma and cerebrospinal fluid glial fibrillary acidic protein levels across the Alzheimer disease continuum. JAMA Neurol. 78, 1471–1483 (2021).

    Article  PubMed  Google Scholar 

  79. Meier, S. et al. Serum glial fibrillary acidic protein compared with neurofilament light chain as a biomarker for disease progression in multiple sclerosis. JAMA Neurol. 80, 287–297 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lippa, S. M., Gill, J., Brickell, T. A., French, L. M. & Lange, R. T. Blood biomarkers relate to cognitive performance years after traumatic brain injury in service members and veterans. J. Int. Neuropsychol. Soc. 27, 508–514 (2021).

    Article  PubMed  Google Scholar 

  81. Lange, R. T., Lippa, S., Brickell, T. A., Gill, J. & French, L. M. Serum tau, neurofilament light chain, glial fibrillary acidic protein, and ubiquitin carboxyl-terminal hydrolase L1 are associated with the chronic deterioration of neurobehavioral symptoms after traumatic brain injury. J. Neurotrauma 40, 482–492 (2023).

    Article  PubMed  Google Scholar 

  82. Pierce, M. E. et al. Plasma biomarkers associated with deployment trauma and its consequences in post-9/11 era veterans: initial findings from the TRACTS longitudinal cohort. Transl. Psychiatry 12, 80 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sandroni, C. et al. Prediction of good neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med. 48, 389–413 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bagnato, S. et al. Reduced neuron-specific enolase levels in chronic severe traumatic brain injury. J. Neurotrauma 37, 423–427 (2020).

    Article  PubMed  Google Scholar 

  85. Powell, J. R. et al. Neuroinflammatory biomarkers associated with mild traumatic brain injury history in special operations forces combat soldiers. J. Head Trauma Rehabil. 35, 300–307 (2020).

    Article  PubMed  Google Scholar 

  86. Svingos, A. M. et al. Predicting clinical outcomes 7–10 years after severe traumatic brain injury: exploring the prognostic utility of the IMPACT lab model and cerebrospinal fluid UCH-L1 and MAP-2. Neurocrit. Care 37, 172–183 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Thelin, E. et al. A serum protein biomarker panel improves outcome prediction in human traumatic brain injury. J. Neurotrauma 36, 2850–2862 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shahim, P. et al. Time course and diagnostic utility of NfL, tau, GFAP, and UCH-L1 in subacute and chronic TBI. Neurology 95, e623–e636 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hinson, H. E., Rowell, S. & Schreiber, M. Clinical evidence of inflammation driving secondary brain injury: a systematic review. J. Trauma Acute Care Surg. 78, 184–191 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shi, K., Zhang, J., Dong, J. F. & Shi, F. D. Dissemination of brain inflammation in traumatic brain injury. Cell. Mol. Immunol. 16, 523–530 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ramlackhansingh, A. F. et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann. Neurol. 70, 374–383 (2011).

    Article  PubMed  Google Scholar 

  92. Johnson, V. E. et al. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136, 28–42 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Loane, D. J. & Byrnes, K. R. Role of microglia in neurotrauma. Neurotherapeutics 7, 366–377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yong, V. W. Microglia in multiple sclerosis: protectors turn destroyers. Neuron 110, 3534–3548 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Alam, A. et al. Cellular infiltration in traumatic brain injury. J. Neuroinflamm. 17, 328 (2020).

    Article  CAS  Google Scholar 

  96. Cash, A. & Theus, M. H. Mechanisms of blood–brain barrier dysfunction in traumatic brain injury. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21093344 (2020).

  97. Jassam, Y. N., Izzy, S., Whalen, M., McGavern, D. B. & El Khoury, J. Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron 95, 1246–1265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Edwards, P. et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet 365, 1957–1959 (2005).

    Article  PubMed  Google Scholar 

  99. McConeghy, K. W., Hatton, J., Hughes, L. & Cook, A. M. A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs 26, 613–636 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Wright, D. W. et al. Very early administration of progesterone for acute traumatic brain injury. N. Engl. J. Med. 371, 2457–2466 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Masel, B. E. & DeWitt, D. S. Traumatic brain injury: a disease process, not an event. J. Neurotrauma 27, 1529–1540 (2010).

    Article  PubMed  Google Scholar 

  102. Faden, A. I. & Loane, D. J. Chronic neurodegeneration after traumatic brain injury: Alzheimer disease, chronic traumatic encephalopathy, or persistent neuroinflammation? Neurotherapeutics 12, 143–150 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Scott, G. et al. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain 141, 459–471 (2018).

    Article  PubMed  Google Scholar 

  104. Hernandez-Ontiveros, D. G. et al. Microglia activation as a biomarker for traumatic brain injury. Front. Neurol. 4, 30 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zeiler, F. A. et al. Cerebrospinal fluid and microdialysis cytokines in severe traumatic brain injury: a scoping systematic review. Front. Neurol. 8, 331 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Li, G. et al. Neurological symptoms and their associations with inflammatory biomarkers in the chronic phase following traumatic brain injuries. Front. Psychiatry 13, 895852 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Chaban, V. et al. Systemic inflammation persists the first year after mild traumatic brain injury: results from the prospective Trondheim mild traumatic brain injury study. J. Neurotrauma 37, 2120–2130 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Elkon, K. & Casali, P. Nature and functions of autoantibodies. Nat. Clin. Pract. Rheumatol. 4, 491–498 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu, J. & Li, L. Autoantibodies in Alzheimer’s disease: potential biomarkers, pathogenic roles, and therapeutic implications. J. Biomed. Res. 30, 361–372 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kocurova, G., Ricny, J. & Ovsepian, S. V. Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases. Theranostics 12, 3045–3056 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Raad, M. et al. Autoantibodies in traumatic brain injury and central nervous system trauma. Neuroscience 281, 16–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Wang, K. K. et al. Plasma anti-glial fibrillary acidic protein autoantibody levels during the acute and chronic phases of traumatic brain injury: a transforming research and clinical knowledge in traumatic brain injury pilot study. J. Neurotrauma 33, 1270–1277 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Marchi, N. et al. Consequences of repeated blood–brain barrier disruption in football players. PLoS ONE 8, e56805 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Thelin, E. P., Nelson, D. W. & Bellander, B. M. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir. 159, 209–225 (2017).

    Article  PubMed  Google Scholar 

  115. Lindblad, C. et al. Influence of blood–brain barrier integrity on brain protein biomarker clearance in severe traumatic brain injury: a longitudinal prospective study. J. Neurotrauma 37, 1381–1391 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Thelin, E. P. et al. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: a systematic review. Front. Neurol. 8, 300 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Castell, J. V. et al. Plasma clearance, organ distribution and target cells of interleukin-6/hepatocyte-stimulating factor in the rat. Eur. J. Biochem. 177, 357–361 (1988).

    Article  CAS  PubMed  Google Scholar 

  118. Werner, C. & Engelhard, K. Pathophysiology of traumatic brain injury. Br. J. Anaesth. 99, 4–9 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Eide, P. K. et al. Plasma neurodegeneration biomarker concentrations associate with glymphatic and meningeal lymphatic measures in neurological disorders. Nat. Commun. 14, 2084 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Plog, B. A. et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci. 35, 518–526 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Baiardi, S. et al. Diagnostic value of plasma p-tau181, NfL, and GFAP in a clinical setting cohort of prevalent neurodegenerative dementias. Alzheimers Res. Ther. 14, 153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Park, Y., Kc, N., Paneque, A. & Cole, P. D. Tau, glial fibrillary acidic protein, and neurofilament light chain as brain protein biomarkers in cerebrospinal fluid and blood for diagnosis of neurobiological diseases. Int. J. Mol. Sci. https://doi.org/10.3390/ijms25126295 (2024).

  123. Varlow, C., Knight, A. C., McQuade, P. & Vasdev, N. Characterization of neuroinflammatory positron emission tomography biomarkers in chronic traumatic encephalopathy. Brain Commun. 4, fcac019 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Coughlin, J. M. et al. Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol. Dis. 74, 58–65 (2015).

    Article  PubMed  Google Scholar 

  125. Simon, D. W. et al. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat. Rev. Neurol. 13, 171–191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Wang, Q., Liu, Y. & Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener. 4, 19 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kals, M. et al. A genome-wide association study of outcome from traumatic brain injury. eBioMedicine 77, 103933 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McFadyen, C. A. et al. Apolipoprotein E4 polymorphism and outcomes from traumatic brain injury: a living systematic review and meta-analysis. J. Neurotrauma 38, 1124–1136 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Toledo, J. B. et al. APOE effect on amyloid-β PET spatial distribution, deposition rate, and cut-points. J. Alzheimers Dis. 69, 783–793 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Stevenson-Hoare, J. et al. Plasma biomarkers and genetics in the diagnosis and prediction of Alzheimer’s disease. Brain 146, 690–699 (2023).

    Article  PubMed  Google Scholar 

  132. Ghai, V. et al. Alterations in plasma microRNA and protein levels in war veterans with chronic mild traumatic brain injury. J. Neurotrauma 37, 1418–1430 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  133. van Amerongen, S. et al. Rationale and design of the ‘NEurodegeneration: Traumatic brain injury as Origin of the Neuropathology (NEwTON)’ study: a prospective cohort study of individuals at risk for chronic traumatic encephalopathy. Alzheimers Res. Ther. 14, 119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Alosco, M. L. et al. Developing methods to detect and diagnose chronic traumatic encephalopathy during life: rationale, design, and methodology for the DIAGNOSE CTE Research Project. Alzheimers Res. Ther. 13, 136 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Brett, B. L. et al. Long-term multidomain patterns of change after traumatic brain injury: a TRACK-TBI LONG study. Neurology 101, e740–e753 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zimmerman, K. A. et al. Prospective cohort study of long-term neurological outcomes in retired elite athletes: the advanced biomarker, advanced imaging and neurocognitive (BRAIN) health study protocol. BMJ Open 14, e082902 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Graham, N. S. N. et al. Multicentre longitudinal study of fluid and neuroimaging BIOmarkers of AXonal injury after traumatic brain injury: the BIO-AX-TBI study protocol. BMJ Open 10, e042093 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Koerbel, K. et al. Evaluating the utility of serum NfL, GFAP, UCHL1 and tTAU as estimates of CSF levels and diagnostic instrument in neuroinflammation and multiple sclerosis. Mult. Scler. Relat. Disord. 87, 105644 (2024).

    Article  CAS  PubMed  Google Scholar 

  139. The US Food and Drug Administration. FDA Authorizes Marketing of First Blood Test to Aid in the Evaluation of Concussion in Adults https://www.fda.gov/news-events/press-announcements/fda-authorizes-marketing-first-blood-test-aid-evaluation-concussion-adults (2018).

  140. Benatar, M. et al. Validation of serum neurofilaments as prognostic and potential pharmacodynamic biomarkers for ALS. Neurology 95, e59–e69 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Santing, J. A. L. et al. Increasing incidence of ED-visits and admissions due to traumatic brain injury among elderly patients in the Netherlands, 2011–2020. Injury 54, 110902 (2023).

    Article  PubMed  Google Scholar 

  142. Kiwanuka, O. et al. Long-term health-related quality of life after trauma with and without traumatic brain injury: a prospective cohort study. Sci. Rep. 13, 2986 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Newcombe, V. F. et al. Dynamic changes in white matter abnormalities correlate with late improvement and deterioration following TBI: a diffusion tensor imaging study. Neurorehabil. Neural Repair. 30, 49–62 (2016).

    Article  PubMed  Google Scholar 

  144. Gonzalez, A. C. et al. Diffusion tensor imaging correlates of concussion related cognitive impairment. Front. Neurol. 12, 639179 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. van Vliet, E. A. et al. Long-lasting blood–brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol. Dis. 145, 105080 (2020).

    Article  PubMed  Google Scholar 

  146. Devoto, C. et al. Exosomal microRNAs in military personnel with mild traumatic brain injury: preliminary results from the chronic effects of neurotrauma consortium biomarker discovery project. J. Neurotrauma 37, 2482–2492 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Rubenstein, R. et al. Comparing plasma phospho tau, total tau, and phospho tau–total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol. 74, 1063–1072 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Schnakers, C. et al. Longitudinal changes in blood-based biomarkers in chronic moderate to severe traumatic brain injury: preliminary findings. Brain Inj. 35, 285–291 (2021).

    Article  PubMed  Google Scholar 

  149. Shahim, P. et al. Neurofilament light as a biomarker in traumatic brain injury. Neurology 95, e610–e622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Shahim, P. et al. Serum NfL and GFAP as biomarkers of progressive neurodegeneration in TBI. Alzheimers Dement. 20, 4663–4676 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C.L. is supported through Uppsala Region ALF together with Uppsala University and Uppsala University Hospital through the Research Residency Program in Neurosurgery and has received travelling grants from the Swedish Society of Medicine and Karolinska Institute. F.A.Z. is supported through the Natural Sciences and Engineering Research Council of Canada (NSERC) (DGECR-2022-00260, RGPIN-2022-03621, ALLRP-576386-22, ALLRP-576386-22, I2IPJ 586104-23 and ALLRP 586244-23), the University of Manitoba Endowed Manitoba Public Insurance (MPI) Chair in Neuroscience, the Canadian Institutes of Health Research (CIHR) (472286 and 432061), the Health Sciences Centre Foundation Winnipeg, the Pan Am Clinic Foundation, the Canada Foundation for Innovation (CFI) (38583), Research Manitoba (3906 and 5529) and the University of Manitoba VPRI Research Investment Fund (RIF). H.Z. is a Wallenberg Scholar supported by grants from the Swedish Research Council (2018-02532), the European Union’s Horizon Europe research and innovation programme (101053962), Swedish State Support for Clinical Research (ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (201809-2016862), the AD Strategic Fund and the Alzheimer’s Association (ADSF-21-831376-C, ADSF-21-831381-C and ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (860197, MIRIADE), the European Union Joint Programme — Neurodegenerative Disease Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003). T.G. is a recipient of the Grant for Multiple Sclerosis Innovation award and supported by grants from Region Stockholm and Karolinska Institute, the Swedish Research Council, the Swedish Society for Medical Research and Alzheimersfonden. P.S. is a Wallenberg Clinical Scholar (2020-0231) and supported by grants from the Swedish Research Council (2019-01422) and Region Stockholm (520183). F.P. is supported by the Swedish Research Council (2023-00533), the Region Stockholm (FoUI-987565), the Swedish Brain Fund (FO2021-0277) and the Horizon Europe Framework Programme (101136991). E.P.T. acknowledges funding support from Karolinska Institute Research Grants (2022-01576), Region Stockholm ALF (FoUI-962566), the Swedish Society of Medicine (SLS-985504), the Swedish Brain Foundation (Hjärnfonden, FO2023-0124), Region Stockholm Clinical Research Appointment (FoUI-981490) and the Erling-Persson Family Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.F., E.P.T., C.L. and F.P. contributed substantially to the idea and content throughout the Review. All authors wrote the article and reviewed the manuscript before submission.

Corresponding author

Correspondence to Eric P. Thelin.

Ethics declarations

Competing interests

S.F., C.L., F.A.Z., T.G. and E.P.T. have nothing to disclose. H.Z. has served at scientific advisory boards and/or as a consultant for Abbvie, Acumen, Alector, Alzinova, ALZPath, Annexon, Apellis, Artery Therapeutics, AZTherapies, CogRx, Denali, Eisai, Nervgen, Novo Nordisk, Optoceutics, Passage Bio, Pinteon Therapeutics, Prothena, Red Abbey Labs, reMYND, Roche, Samumed, Siemens Healthineers, Triplet Therapeutics and Wave, has given lectures in symposia sponsored by Alzecure, Biogen, Cellectricon, Fujirebio and Roche and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). P.S. is serving in a DSMB for Lundbeck and in advisory boards for AbbVie and Takeda. F.P. has received research grants from Janssen, Merck KGaA and UCB and fees for serving on the data monitoring committee in clinical trials with Chugai, Lundbeck and Roche, has prepared an expert witness statement for Novartis and is steering committee member of the BioMS consortium.

Peer review

Peer review information

Nature Reviews Neurology thanks David Sharp; Firas Kobeissy; Ramon Diaz-Arrastia, who co-reviewed with Cillian Lynch; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friberg, S., Lindblad, C., Zeiler, F.A. et al. Fluid biomarkers of chronic traumatic brain injury. Nat Rev Neurol 20, 671–684 (2024). https://doi.org/10.1038/s41582-024-01024-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-024-01024-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research