Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shaping the brain vasculature in development and disease in the single-cell era

Abstract

The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis — the formation of new blood vessels — is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the ‘neurovascular link’ defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modes of vessel formation during brain development, in brain tumours and in brain AVMs.
Fig. 2: Neurovascular link molecules affecting endothelial tip cell sprouting during vascular brain development, in brain tumours and in brain AVMs.
Fig. 3: Structural and molecular mechanisms of angiogenesis at the embryonic, postnatal and adult stages of vascular brain development.
Fig. 4: Angiogenesis during brain development, in glial brain tumours and in brain AVMs.
Fig. 5: Molecular mechanisms regulating the vasculature during initiation and progression of glial brain tumours.
Fig. 6: Molecular mechanisms regulating the vasculature during initiation and progression of brain AVMs.

Similar content being viewed by others

References

  1. Mink, J. W., Blumenschine, R. J. & Adams, D. B. Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol. 241, R203–R212 (1981).

    CAS  PubMed  Google Scholar 

  2. Zlokovic, B. V. & Apuzzo, M. L. Strategies to circumvent vascular barriers of the central nervous system. Neurosurgery 43, 877–878 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Wälchli, T. et al. Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain. Nat. Protoc. 10, 53–74 (2015). This study describes a method allowing the visualization and quantitative assessment of angiogenesis, ETCs and perfused blood vessels in the postnatal mouse brain.

    Article  PubMed  Google Scholar 

  4. Zlokovic, B. V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008). This review provides an in-depth exploration of BBB integrity, its cellular and molecular composition, and its disruption in neurodegenerative disorders such as Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis and multiple sclerosis.

    Article  CAS  PubMed  Google Scholar 

  5. Stewart, P. A. & Wiley, M. J. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev. Biol. 84, 183–192 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Vasudevan, A., Long, J. E., Crandall, J. E., Rubenstein, J. L. & Bhide, P. G. Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat. Neurosci. 11, 429–439 (2008). This study demonstrates that telencephalic angiogenesis in mice progresses along a spatial, ventral-to-dorsal gradient regulated by compartment-specific homeobox transcription factors in addition to passive sprouting into the brain parenchyma upon metabolic needs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Komsany, A. & Pezzella, F. in Tumor Vascularization (eds Ribatti, D. & Pezzella, F.) 113–127 (Academic Press, 2020).

  8. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wälchli, T. et al. Wiring the vascular network with neural cues: a CNS perspective. Neuron 87, 271–296 (2015). This review focuses on the regulatory effects of molecules involved in the NVL on angiogenesis in both peripheral tissues and the CNS, while distinguishing between general and CNS-specific cues for angiogenesis.

    Article  PubMed  Google Scholar 

  10. Muoio, V., Persson, P. B. & Sendeski, M. M. The neurovascular unit – concept review. Acta Physiol. 210, 790–798 (2014).

    Article  CAS  Google Scholar 

  11. Eichmann, A. & Thomas, J. L. Molecular parallels between neural and vascular development. Cold Spring Harb. Perspect. Med. 3, a006551 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jain, R. K. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26, 605–622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paredes, I., Himmels, P. & Ruiz de Almodovar, C. Neurovascular communication during CNS development. Dev. Cell 45, 10–32 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Quaegebeur, A., Lange, C. & Carmeliet, P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 71, 406–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Wälchli, T. et al. Nogo-A is a negative regulator of CNS angiogenesis. Proc. Natl Acad. Sci. USA 110, E1943 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Ferguson, J. E. 3rd, Kelley, R. W. & Patterson, C. Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arterioscler. Thromb. Vasc. Biol. 25, 2246–2254 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Ricci-Vitiani, L. et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468, 824–828 (2010). This study shows that a variable number of endothelial cells in glioblastoma carry the same genomic alteration as tumour cells, indicating that a significant portion of the vascular endothelium is of neoplastic origin, describing a new mechanism for tumour vasculogenesis that may explain the presence of cancer-derived endothelial-like cells in several malignancies.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, R. et al. Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468, 829–833 (2010). This study demonstrates that a subpopulation of glioblastoma-derived ECs harbour the same somatic mutations identified in tumour cells and shows that the stem-cell-like CD133+ fraction includes a subset of VE-cadherin-expressing cells, indicative of transdifferentiation of tumour-derived stem cells into EPCs capable of maturing into ECs, thereby contributing to the tumour vasculature.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, L. et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139–152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arvanitis, C. D., Ferraro, G. B. & Jain, R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 20, 26–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Jain, R. K. & Carmeliet, P. SnapShot: tumor angiogenesis. Cell 149, 1408–1408.e1401 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Hardee, M. E. & Zagzag, D. Mechanisms of glioma-associated neovascularization. Am. J. Pathol. 181, 1126–1141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boire, A., Brastianos, P. K., Garzia, L. & Valiente, M. Brain metastasis. Nat. Rev. Cancer 20, 4–11 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Vallon, M., Chang, J., Zhang, H. & Kuo, C. J. Developmental and pathological angiogenesis in the central nervous system. Cell. Mol. Life Sci. 71, 3489–3506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, H. W. et al. Role of venous endothelial cells in developmental and pathologic angiogenesis. Circulation 144, 1308–1322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hellstrom, M., Phng, L. K. & Gerhardt, H. VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh. Migr. 1, 133–136 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Blanco, R. & Gerhardt, H. VEGF and Notch in tip and stalk cell selection. Cold Spring Harb. Perspect. Med. 3, a006569 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xue, Y. et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum. Mol. Genet. 8, 723–730 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943–953 (2010). This study illustrates that ECs compete for the tip cell position through relative levels of VEGFR1 and VEGFR2, in the presence of Notch-modulated DLL4 expression.

    Article  CAS  PubMed  Google Scholar 

  33. Bentley, K. et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat. Cell Biol. 16, 309–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Pitulescu, M. E. et al. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat. Cell Biol. 19, 915–927 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  PubMed  Google Scholar 

  36. Shah, A. V. et al. The endothelial transcription factor ERG mediates angiopoietin-1-dependent control of Notch signalling and vascular stability. Nat. Commun. 8, 16002 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Herbert, S. P. & Stainier, D. Y. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12, 551–564 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ali, Z. et al. Intussusceptive vascular remodeling precedes pathological neovascularization. Arterioscler. Thromb. Vasc. Biol. 39, 1402–1418 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Djonov, V., Baum, O. & Burri, P. H. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res. 314, 107–117 (2003).

    Article  PubMed  Google Scholar 

  41. Patan, S., Alvarez, M. J., Schittny, J. C. & Burri, P. H. Intussusceptive microvascular growth: a common alternative to capillary sprouting. Arch. Histol. Cytol. 55, 65–75 (1992).

    Article  PubMed  Google Scholar 

  42. Patan, S., Haenni, B. & Burri, P. H. Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anat. Embryol. 187, 121–130 (1993).

    Article  CAS  Google Scholar 

  43. Makanya, A. N., Stauffer, D., Ribatti, D., Burri, P. H. & Djonov, V. Microvascular growth, development, and remodeling in the embryonic avian kidney: the interplay between sprouting and intussusceptive angiogenic mechanisms. Microsc. Res. Tech. 66, 275–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Gargett, C. E. & Rogers, P. A. Human endometrial angiogenesis. Reproduction 121, 181–186 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Djonov, V., Schmid, M., Tschanz, S. A. & Burri, P. H. Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ. Res. 86, 286–292 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Z. G. et al. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J. Cereb. Blood Flow. Metab. 22, 379–392 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Nico, B. et al. Intussusceptive microvascular growth in human glioma. Clin. Exp. Med. 10, 93–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Ornelas, S. et al. Three-dimensional ultrastructure of the brain pericyte-endothelial interface. J. Cereb. Blood Flow. Metab. 41, 2185–2200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hartmann, D. A. et al. Brain capillary pericytes exert a substantial but slow influence on blood flow. Nat. Neurosci. 24, 633–645 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mancuso, M. R., Kuhnert, F. & Kuo, C. J. Developmental angiogenesis of the central nervous system. Lymphat. Res. Biol. 6, 173–180 (2008).

    Article  PubMed  Google Scholar 

  51. Iadecola, C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96, 17–42 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tam, S. J. & Watts, R. J. Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu. Rev. Neurosci. 33, 379–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Daneman, R., Zhou, L., Kebede, A. A. & Barres, B. A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Johansson, P. A. et al. Blood-CSF barrier function in the rat embryo. Eur. J. Neurosci. 24, 65–76 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e1016 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saunders, N. R. et al. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Front. Neurosci. 8, 404–404 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Saunders, N. R., Liddelow, S. A. & Dziegielewska, K. M. Barrier mechanisms in the developing brain. Front. Pharmacol. 3, 46 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ek, C. J., Dziegielewska, K. M., Stolp, H. & Saunders, N. R. Functional effectiveness of the blood-brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). J. Comp. Neurol. 496, 13–26 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and dysfunction of the blood-brain barrier. Cell 163, 1064–1078 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Storkebaum, E., Quaegebeur, A., Vikkula, M. & Carmeliet, P. Cerebrovascular disorders: molecular insights and therapeutic opportunities. Nat. Neurosci. 14, 1390–1397 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Segarra, M., Aburto, M. R. & Acker-Palmer, A. Blood-brain barrier dynamics to maintain brain homeostasis. Trends Neurosci. https://doi.org/10.1016/j.tins.2020.12.002 (2021).

    Article  PubMed  Google Scholar 

  63. Munji, R. N. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module. Nat. Neurosci. 22, 1892–1902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Lowery, L. A. & Van Vactor, D. The trip of the tip: understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 10, 332–343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marin-Padilla, M. Early vascularization of the embryonic cerebral cortex: Golgi and electron microscopic studies. J. Comp. Neurol. 241, 237–249 (1985).

    Article  CAS  PubMed  Google Scholar 

  68. Phng, L. K., Stanchi, F. & Gerhardt, H. Filopodia are dispensable for endothelial tip cell guidance. Development 140, 4031–4040 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. del Toro, R. et al. Identification and functional analysis of endothelial tip cell-enriched genes. Blood 116, 4025–4033 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhao, Q. et al. Single-cell transcriptome analyses reveal endothelial cell heterogeneity in tumors and changes following antiangiogenic treatment. Cancer Res. 78, 2370–2382 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Strasser, G. A., Kaminker, J. S. & Tessier-Lavigne, M. Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115, 5102–5110 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Rocha, S. F. et al. Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. Circ. Res. 115, 581–590 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Goveia, J. et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell 37, 21–36.e13 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779.e720 (2020). This study presents a comprehensive EC atlas inventorying EC heterogeneity of more than 32,000 single-cell EC transcriptomes from 11 mouse tissues, identifying 78 EC subclusters, combined with in-depth metabolic transcriptome analysis, thereby providing a powerful discovery tool and resource.

    Article  CAS  PubMed  Google Scholar 

  75. Winkler, E. A. et al. A single-cell atlas of the normal and malformed human brain vasculature. Science 375, eabi7377 (2022). This study profiles single-cell transcriptomes of 181,388 cells from fresh human tissue to define a cell atlas of the adult human cerebrovasculature, including EC molecular signatures with arteriovenous segmentation and expanded PVC diversity, enabling detailed comparison of the physiological brain vasculature (from fresh human temporal lobe tissue) with cellular and molecular perturbations in brain AVMs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018). This study uses vascular single-cell transcriptomics to provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain, thereby uncovering the transcriptional basis of the gradual phenotypic zonation along the arteriovenous axis and revealing previously unknown cell type differences.

    Article  CAS  PubMed  Google Scholar 

  77. Segarra, M., Aburto, M. R., Hefendehl, J. & Acker-Palmer, A. Neurovascular interactions in the nervous system. Annu. Rev. Cell Dev. Biol. 35, 615–635 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Charron, F. & Tessier-Lavigne, M. The Hedgehog, TGF-beta/BMP and Wnt families of morphogens in axon guidance. Adv. Exp. Med. Biol. 621, 116–133 (2007).

    Article  PubMed  Google Scholar 

  79. Zacchigna, S., Lambrechts, D. & Carmeliet, P. Neurovascular signalling defects in neurodegeneration. Nat. Rev. Neurosci. 9, 169–181 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Walchli, T. et al. Nogo-A regulates vascular network architecture in the postnatal brain. J. Cereb. Blood Flow. Metab. 37, 614–631 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Li, W. et al. Peripheral nerve-derived CXCL12 and VEGF-A regulate the patterning of arterial vessel branching in developing limb skin. Dev. Cell 24, 359–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Honma, Y. et al. Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35, 267–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Makita, T., Sucov, H. M., Gariepy, C. E., Yanagisawa, M. & Ginty, D. D. Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 452, 759–763 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ma, S., Kwon, H. J., Johng, H., Zang, K. & Huang, Z. Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling. PLoS Biol. 11, e1001469 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Minocha, S. et al. NG2 glia are required for vessel network formation during embryonic development. eLife 4, e09102 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ma, S., Kwon, H. J. & Huang, Z. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain. PLoS ONE 7, e48001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Coelho-Santos, V. & Shih, A. Y. Postnatal development of cerebrovascular structure and the neurogliovascular unit. Wiley Interdiscip. Rev. Dev. Biol. 9, e363 (2020).

    Article  PubMed  Google Scholar 

  88. Fantin, A., Vieira, J. M., Plein, A., Maden, C. H. & Ruhrberg, C. The embryonic mouse hindbrain as a qualitative and quantitative model for studying the molecular and cellular mechanisms of angiogenesis. Nat. Protoc. 8, 418–429 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Puelles, L. et al. Patterned vascularization of embryonic mouse forebrain, and neuromeric topology of major human subarachnoidal arterial branches: a prosomeric mapping. Front. Neuroanat. 13, 59 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Marín-Padilla, M. The human brain intracerebral microvascular system: development and structure. Front. Neuroanat. https://doi.org/10.3389/fnana.2012.00038 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pereda, J., Sulz, L., San Martin, S. & Godoy-Guzman, C. The human lung during the embryonic period: vasculogenesis and primitive erythroblasts circulation. J. Anat. 222, 487–494 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Matsumoto, K., Yoshitomi, H., Rossant, J. & Zaret, K. S. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559–563 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Leslie, J. D. et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134, 839–844 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Wang, X. et al. YAP/TAZ Orchestrate VEGF signaling during developmental angiogenesis. Dev. Cell 42, 462–478.e467 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Hackett, S. F., Wiegand, S., Yancopoulos, G. & Campochiaro, P. A. Angiopoietin-2 plays an important role in retinal angiogenesis. J. Cell Physiol. 192, 182–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Sato, T. N. et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70–74 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Jones, C. A. et al. Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat. Cell Biol. 11, 1325–1331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bedell, V. M. et al. roundabout4 is essential for angiogenesis in vivo. Proc. Natl Acad. Sci. USA 102, 6373–6378 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tong, M., Jun, T., Nie, Y., Hao, J. & Fan, D. The role of the Slit/Robo signaling pathway. J. Cancer 10, 2694–2705 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gu, C. et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307, 265–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Lejmi, E. et al. Netrin-4 promotes mural cell adhesion and recruitment to endothelial cells. Vasc. Cell 6, 1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465, 487–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. McCarty, J. H. et al. Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development 132, 165–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Elaimy, A. L. & Mercurio, A. M. Convergence of VEGF and YAP/TAZ signaling: implications for angiogenesis and cancer biology. Sci. Signal. https://doi.org/10.1126/scisignal.aau1165 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jeansson, M. et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J. Clin. Invest. 121, 2278–2289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, Y., Kontos, C. D., Annex, B. H. & Popel, A. S. Angiopoietin-Tie signaling pathway in endothelial cells: a computational model. iScience 20, 497–511 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Park, K. W. et al. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev. Biol. 261, 251–267 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Dai, C., Gong, Q., Cheng, Y. & Su, G. Regulatory mechanisms of Robo4 and their effects on angiogenesis. Biosci. Rep. https://doi.org/10.1042/bsr20190513 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Serini, G. et al. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424, 391–397 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Vieira, J. M., Schwarz, Q. & Ruhrberg, C. Selective requirements for NRP1 ligands during neurovascular patterning. Development 134, 1833–1843 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Gu, C. et al. Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell 5, 45–57 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fantin, A. et al. NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood 121, 2352–2362 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zygmunt, T. et al. Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy receptor sFlt1. Dev. Cell 21, 301–314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. van der Zwaag, B. et al. PLEXIN-D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis. Dev. Dyn. 225, 336–343 (2002).

    Article  PubMed  Google Scholar 

  117. Fukushima, Y. et al. Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice. J. Clin. Invest. 121, 1974–1985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim, J., Oh, W. J., Gaiano, N., Yoshida, Y. & Gu, C. Semaphorin 3E-Plexin-D1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism. Genes Dev. 25, 1399–1411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lejmi, E. et al. Netrin-4 inhibits angiogenesis via binding to neogenin and recruitment of Unc5B. Proc. Natl Acad. Sci. USA 105, 12491–12496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Larrivee, B. et al. Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes Dev. 21, 2433–2447 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lambert, E., Coissieux, M.-M., Laudet, V. & Mehlen, P. Netrin-4 acts as a pro-angiogenic factor during zebrafish development. J. Biol. Chem. 287, 3987–3999 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Pasquale, E. B. The Eph family of receptors. Curr. Opin. Cell Biol. 9, 608–615 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Pasquale, E. B. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat. Rev. Cancer 10, 165–180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang, Y. & Yang, X. The roles of TGF-β signaling in cerebrovascular diseases. Front. Cell Dev. Biol. 8, 567682 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. McCarty, J. H. et al. Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol. Cell. Biol. 22, 7667–7677 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhu, J. et al. beta8 integrins are required for vascular morphogenesis in mouse embryos. Development 129, 2891–2903 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Arnold, T. D. et al. Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. Development 141, 4489–4499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hirota, S. et al. Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development 142, 4363–4373 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Oh, S. P. et al. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc. Natl Acad. Sci. USA 97, 2626–2631 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li, D. Y. et al. Defective angiogenesis in mice lacking endoglin. Science 284, 1534–1537 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Anderson, K. D. et al. Angiogenic sprouting into neural tissue requires Gpr124, an orphan G protein-coupled receptor. Proc. Natl Acad. Sci. USA 108, 2807–2812 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chang, J. et al. Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. Nat. Med. 23, 450–460 (2017). This study shows that CKO of the CNS-specific receptor GPR124 in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular haemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical WNT–β-catenin signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cho, C., Smallwood, P. M. & Nathans, J. Reck and Gpr124 are essential receptor cofactors for Wnt7a/Wnt7b-specific signaling in mammalian CNS angiogenesis and blood-brain barrier regulation. Neuron 95, 1056–1073.e1055 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Cullen, M. et al. GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc. Natl Acad. Sci. USA 108, 5759–5764 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kuhnert, F. et al. Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330, 985–989 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhou, Y. & Nathans, J. Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical Wnt signaling. Dev. Cell 31, 248–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chang, T. H., Hsieh, F. L., Smallwood, P. M., Gabelli, S. B. & Nathans, J. Structure of the RECK CC ___domain, an evolutionary anomaly. Proc. Natl Acad. Sci. USA 117, 15104–15111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Boyé, K. et al. Endothelial Unc5B controls blood-brain barrier integrity. Nat. Commun. 13, 1169 (2022). This study shows that the endothelial receptor UNC5B controls BBB integrity by maintaining WNT–β-catenin signalling through CNS-specific netrin 1-enhanced UNC5B interaction with the WNT co-receptor LRP6, identifying netrin 1–UNC5B signalling as a ligand–receptor pathway that regulates BBB integrity, with implications for CNS diseases.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Huyghe, A. et al. Netrin-1 promotes naive pluripotency through Neo1 and Unc5b co-regulation of Wnt and MAPK signalling. Nat. Cell Biol. 22, 389–400 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Tam, S. J. et al. Death receptors DR6 and TROY regulate brain vascular development. Dev. Cell 22, 403–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Ye, X., Wang, Y. & Nathans, J. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol. Med. 16, 417–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang, Y. et al. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151, 1332–1344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, Z., Liu, C. H., Huang, S. & Chen, J. Wnt signaling in vascular eye diseases. Prog. Retin. Eye Res. 70, 110–133 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Barak, T. et al. PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans. Nat. Med. 27, 2165–2175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Stenman, J. M. et al. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322, 1247–1250 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Daneman, R. et al. Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc. Natl Acad. Sci. USA 106, 641–646 (2009). This study identifies canonical WNT–β-catenin signalling as being specifically activated in CNS blood vessels, but not in non-CNS blood vessels, during development, and as being associated with the specific expression patterns of WNT7A and WNT7B in ventral regions and WNT1, WNT3, WNT3A and WNT4 in dorsal regions. This suggests an essential role for WNT–β-catenin signalling in driving CNS-specific angiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Posokhova, E. et al. GPR124 functions as a WNT7-specific coactivator of canonical beta-catenin signaling. Cell Rep. 10, 123–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Cho, C., Wang, Y., Smallwood, P. M., Williams, J. & Nathans, J. Molecular determinants in Frizzled, Reck, and Wnt7a for ligand-specific signaling in neurovascular development. Elife https://doi.org/10.7554/eLife.47300 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Wang, Y. et al. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. eLife 8, e43257 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Benz, F. et al. Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. eLife 8, e43818 (2019). This study shows that in mouse development, as well as in adult mice and zebrafish, circumventricular organ-derived ECs displayed low WNT pathway activity. Moreover, claudin 5 and PLVAP (also known as MECA-32 antigen) expression was heterogeneous, indicative of tight and leaky vessels, respectively, thereby contributing to our understanding of BBB maintenance at the molecular level.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Martowicz, A. et al. Endothelial beta-catenin signaling supports postnatal brain and retinal angiogenesis by promoting sprouting, tip cell formation, and VEGFR (vascular endothelial growth factor receptor) 2 expression. Arterioscler. Thromb. Vasc. Biol. https://doi.org/10.1161/atvbaha.119.312749 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Fujita, M. et al. Assembly and patterning of the vascular network of the vertebrate hindbrain. Development 138, 1705–1715 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Coelho-Santos, V., Berthiaume, A.-A., Ornelas, S., Stuhlmann, H. & Shih, A. Y. Imaging the construction of capillary networks in the neonatal mouse brain. Proc. Natl Acad. Sci. USA 118, e2100866118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wälchli, T. et al. Hierarchical imaging and computational analysis of three-dimensional vascular network architecture in the entire postnatal and adult mouse brain. Nat. Protoc. 16, 4564–4610 (2021). This study describes a step-by-step protocol that enables the characterization of brain vascular networks separately for capillaries and non-capillaries in the entire postnatal and adult mouse brain.

    Article  PubMed  Google Scholar 

  155. Miao, R. Q. et al. Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proc. Natl Acad. Sci. USA 103, 10997–11002 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhao, B. et al. Nogo-B receptor is essential for angiogenesis in zebrafish via Akt pathway. Blood 116, 5423–5433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schwab, M. E. Functions of Nogo proteins and their receptors in the nervous system. Nat. Rev. Neurosci. 11, 799–811 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Rana, U. et al. Nogo-B receptor deficiency causes cerebral vasculature defects during embryonic development in mice. Dev. Biol. 410, 190–201 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Park, E. J., Grabinska, K. A., Guan, Z. & Sessa, W. C. NgBR is essential for endothelial cell glycosylation and vascular development. EMBO Rep. 17, 167–177 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rohlenova, K., Veys, K., Miranda-Santos, I., De Bock, K. & Carmeliet, P. Endothelial cell metabolism in health and disease. Trends Cell Biol. 28, 224–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Li, X., Sun, X. & Carmeliet, P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab. 30, 414–433 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Nikolaev, S. I. et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N. Engl. J. Med. 378, 250–261 (2018). This study identifies activating KRAS mutations in the majority of tissue samples of AVMs of the brain, proposing that KRAS-induced activation of the MAPK signalling pathway in brain ECs underlies the development of these lesions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wälchli, T. et al. Molecular atlas of the human brain vasculature at the single-cell level. bioRxiv https://doi.org/10.1101/2021.10.18.464715 (2021). This study profiles 599,215 freshly isolated ECs, PVS and cells derived from other tissues from 47 fetuses and adult patients using scRNA-seq to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature.

    Article  Google Scholar 

  164. Weller, M. et al. Glioma. Nat. Rev. Dis. Prim. 1, 15017 (2015).

    Article  PubMed  Google Scholar 

  165. Boyd, N. H. et al. Glioma stem cells and their roles within the hypoxic tumor microenvironment. Theranostics 11, 665–683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wirsching, H. G., Roth, P. & Weller, M. A vasculature-centric approach to developing novel treatment options for glioblastoma. Expert. Opin. Ther. Targets https://doi.org/10.1080/14728222.2021.1881062 (2021).

    Article  PubMed  Google Scholar 

  167. Diaz, R. J. et al. The role of bevacizumab in the treatment of glioblastoma. J. Neurooncol 133, 455–467 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Thanasupawat, T. et al. Dovitinib enhances temozolomide efficacy in glioblastoma cells. Mol. Oncol. 11, 1078–1098 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sharma, M. et al. Phase II study of dovitinib in recurrent glioblastoma. J. Neurooncol 144, 359–368 (2019).

    Article  CAS  PubMed  Google Scholar 

  170. Stupp, R. et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 15, 1100–1108 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Balana, C. et al. Sunitinib administered prior to radiotherapy in patients with non-resectable glioblastoma: results of a phase II study. Target. Oncol. 9, 321–329 (2014).

    Article  PubMed  Google Scholar 

  172. Mosteiro, A. et al. The vascular microenvironment in glioblastoma: a comprehensive review. Biomedicines https://doi.org/10.3390/biomedicines10061285 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Frentzas, S. et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat. Med. 22, 1294–1302 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bridgeman, V. L. et al. Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J. Pathol. 241, 362–374 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Budde, M. D., Gold, E., Jordan, E. K., Smith-Brown, M. & Frank, J. A. Phase contrast MRI is an early marker of micrometastatic breast cancer development in the rat brain. NMR Biomed. 25, 726–736 (2012).

    Article  PubMed  Google Scholar 

  176. Donnem, T. et al. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med. 2, 427–436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Caspani, E. M., Crossley, P. H., Redondo-Garcia, C. & Martinez, S. Glioblastoma: a pathogenic crosstalk between tumor cells and pericytes. PLoS ONE 9, e101402 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. Simon, M. P., Tournaire, R. & Pouyssegur, J. The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. J. Cell Physiol. 217, 809–818 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Lindberg, O. R. et al. GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity. Oncotarget 7, 79101–79116 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Le Joncour, V. et al. Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization. EMBO Mol. Med. 11, e9034 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Seano, G. & Jain, R. K. Vessel co-option in glioblastoma: emerging insights and opportunities. Angiogenesis 23, 9–16 (2020). This review explores the histological features and the dynamics of vessel co-option in glioblastoma, and provides a detailed description of the molecular players discovered so far.

    Article  PubMed  Google Scholar 

  183. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Davis, G. E., Norden, P. R. & Bowers, S. L. Molecular control of capillary morphogenesis and maturation by recognition and remodeling of the extracellular matrix: functional roles of endothelial cells and pericytes in health and disease. Connect. Tissue Res. 56, 392–402 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chantrain, C. F. et al. Mechanisms of pericyte recruitment in tumour angiogenesis: a new role for metalloproteinases. Eur. J. Cancer 42, 310–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Sattiraju, A. & Mintz, A. Pericytes in glioblastomas: multifaceted role within tumor microenvironments and potential for therapeutic interventions. Adv. Exp. Med. Biol. 1147, 65–91 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bruna, A. et al. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11, 147–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Lindahl, P., Johansson, B. R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997).

    Article  CAS  PubMed  Google Scholar 

  189. Grunewald, M. et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat. Med. 7, 1194–1201 (2001).

    Article  CAS  PubMed  Google Scholar 

  191. Spring, H., Schuler, T., Arnold, B., Hammerling, G. J. & Ganss, R. Chemokines direct endothelial progenitors into tumor neovessels. Proc. Natl Acad. Sci. USA 102, 18111–18116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Rajantie, I. et al. Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104, 2084–2086 (2004).

    Article  CAS  PubMed  Google Scholar 

  193. Gao, D. et al. Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319, 195–198 (2008).

    Article  CAS  PubMed  Google Scholar 

  194. Patel, J. R., McCandless, E. E., Dorsey, D. & Klein, R. S. CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc. Natl Acad. Sci. USA 107, 11062 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694–705 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Urbantat, R. M., Vajkoczy, P. & Brandenburg, S. Advances in chemokine signaling pathways as therapeutic targets in glioblastoma. Cancers https://doi.org/10.3390/cancers13122983 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Burrell, K., Singh, S., Jalali, S., Hill, R. P. & Zadeh, G. VEGF regulates region-specific localization of perivascular bone marrow-derived cells in glioblastoma. Cancer Res. 74, 3727–3739 (2014).

    Article  CAS  PubMed  Google Scholar 

  198. Eberhard, A. et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res. 60, 1388–1393 (2000).

    CAS  PubMed  Google Scholar 

  199. Young, P. P., Hofling, A. A. & Sands, M. S. VEGF increases engraftment of bone marrow-derived endothelial progenitor cells (EPCs) into vasculature of newborn murine recipients. Proc. Natl Acad. Sci. USA 99, 11951–11956 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tabatabai, G., Frank, B., Möhle, R., Weller, M. & Wick, W. Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-beta-dependent HIF-1alpha-mediated induction of CXCL12. Brain 129, 2426–2435 (2006).

    Article  PubMed  Google Scholar 

  201. Hjelmeland, A. B., Lathia, J. D., Sathornsumetee, S. & Rich, J. N. Twisted tango: brain tumor neurovascular interactions. Nat. Neurosci. 14, 1375–1381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Infanger, D. W. et al. Glioblastoma stem cells are regulated by interleukin-8 signaling in a tumoral perivascular niche. Cancer Res. 73, 7079–7089 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Yan, G. N. et al. Endothelial cells promote stem-like phenotype of glioma cells through activating the Hedgehog pathway. J. Pathol. 234, 11–22 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li, D. et al. Glioma-associated human endothelial cell-derived extracellular vesicles specifically promote the tumourigenicity of glioma stem cells via CD9. Oncogene https://doi.org/10.1038/s41388-019-0903-6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Emlet, D. R. et al. Targeting a glioblastoma cancer stem-cell population defined by EGF receptor variant III. Cancer Res. 74, 1238–1249 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Han, X. et al. P4HA1 Regulates CD31 via COL6A1 in the transition of glioblastoma stem-like cells to tumor endothelioid cells. Front. Oncol. 12, 836511 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Zhao, C. et al. ETV2 mediates endothelial transdifferentiation of glioblastoma. Signal. Transduct. Target. Ther. 3, 4 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Chen, H. F. et al. Twist1 induces endothelial differentiation of tumour cells through the Jagged1-KLF4 axis. Nat. Commun. 5, 4697 (2014).

    Article  CAS  PubMed  Google Scholar 

  209. Baisiwala, S. et al. Chemotherapeutic stress induces transdifferentiation of glioblastoma cells to endothelial cells and promotes vascular mimicry. Stem Cell Int. 2019, 6107456 (2019).

    Google Scholar 

  210. De Pascalis, I. et al. Endothelial trans-differentiation in glioblastoma recurring after radiotherapy. Mod. Pathol. 31, 1361–1366 (2018).

    Article  PubMed  Google Scholar 

  211. Deshors, P. et al. Ionizing radiation induces endothelial transdifferentiation of glioblastoma stem-like cells through the Tie2 signaling pathway. Cell Death Dis. 10, 816 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Guichet, P.-O. et al. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells. Stem Cell 33, 21–34 (2015).

    Article  CAS  Google Scholar 

  213. Zhou, W. et al. Targeting glioma stem cell-derived pericytes disrupts the blood-tumor barrier and improves chemotherapeutic efficacy. Cell stem Cell 21, 591–603.e594 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Soda, Y. et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc. Natl Acad. Sci. USA 108, 4274–4280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Shangguan, W. et al. Endothelium originated from colorectal cancer stem cells constitute cancer blood vessels. Cancer Sci. 108, 1357–1367 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Maniotis, A. J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 155, 739–752 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. El Hallani, S. et al. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 133, 973–982 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Jue, C. et al. Vasculogenic mimicry in hepatocellular carcinoma contributes to portal vein invasion. Oncotarget 7, 77987–77997 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Williamson, S. C. et al. Vasculogenic mimicry in small cell lung cancer. Nat. Commun. 7, 13322 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Baeten, C. I., Hillen, F., Pauwels, P., de Bruine, A. P. & Baeten, C. G. Prognostic role of vasculogenic mimicry in colorectal cancer. Dis. Colon. Rectum 52, 2028–2035 (2009).

    Article  PubMed  Google Scholar 

  221. Ge, H. & Luo, H. Overview of advances in vasculogenic mimicry-a potential target for tumor therapy. Cancer Manag. Res. 10, 2429–2437 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Le Bras, A. et al. HIF-2alpha specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26, 7480–7489 (2007).

    Article  PubMed  Google Scholar 

  223. Yao, X. et al. Vascular endothelial growth factor receptor 2 (VEGFR-2) plays a key role in vasculogenic mimicry formation, neovascularization and tumor initiation by glioma stem-like cells. PLoS ONE 8, e57188 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Mao, J. M., Liu, J., Guo, G., Mao, X. G. & Li, C. X. Glioblastoma vasculogenic mimicry: signaling pathways progression and potential anti-angiogenesis targets. Biomark. Res. 3, 8 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Liu, X. M. et al. Clinical significance of vasculogenic mimicry in human gliomas. J. Neurooncol 105, 173–179 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Liu, Y. et al. IGFBP2 promotes vasculogenic mimicry formation via regulating CD144 and MMP2 expression in glioma. Oncogene 38, 1815–1831 (2019).

    Article  CAS  PubMed  Google Scholar 

  227. Han, G. et al. Overexpression of leptin receptor in human glioblastoma: correlation with vasculogenic mimicry and poor prognosis. Oncotarget 8, 58163–58171 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Li, X. et al. ZRANB2/SNHG20/FOXK1 Axis regulates vasculogenic mimicry formation in glioma. J. Exp. Clin. Cancer Res. 38, 68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Guo, J. et al. Long non-coding RNA LINC00339 stimulates glioma vasculogenic mimicry formation by regulating the miR-539-5p/TWIST1/MMPs Axis. Mol. Ther. Nucleic Acids 10, 170–186 (2018).

    Article  CAS  PubMed  Google Scholar 

  230. Li, G. et al. miR141 inhibits glioma vasculogenic mimicry by controlling EphA2 expression. Mol. Med. Rep. 18, 1395–1404 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Treps, L., Faure, S. & Clere, N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis-interest in making it a therapeutic target. Pharmacol. Ther. https://doi.org/10.1016/j.pharmthera.2021.107805 (2021).

    Article  PubMed  Google Scholar 

  232. Chen, W. et al. Overexpression of vascular endothelial growth factor indicates poor outcomes of glioma: a systematic review and meta-analysis. Int. J. Clin. Exp. Med. 8, 8709–8719 (2015).

    PubMed  PubMed Central  Google Scholar 

  233. Tilak, M., Holborn, J., New, L. A., Lalonde, J. & Jones, N. Receptor tyrosine kinase signaling and targeting in glioblastoma multiforme. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22041831 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Fuller, G. N. & Bigner, S. H. Amplified cellular oncogenes in neoplasms of the human central nervous system. Mutat. Res. 276, 299–306 (1992).

    Article  CAS  PubMed  Google Scholar 

  235. Nishikawa, R. et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc. Natl Acad. Sci. USA 91, 7727–7731 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Sahlgren, C., Gustafsson, M. V., Jin, S., Poellinger, L. & Lendahl, U. Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc. Natl Acad. Sci. USA 105, 6392–6397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  238. Staberg, M. et al. Combined EGFR- and notch inhibition display additive inhibitory effect on glioblastoma cell viability and glioblastoma-induced endothelial cell sprouting in vitro. Cancer Cell Int. 16, 34 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Xu, C. et al. TAZ Expression on endothelial cells is closely related to blood vascular density and VEGFR2 expression in astrocytomas. J. Neuropathol. Exp. Neurol. 78, 172–180 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Cantanhede, I. G. & de Oliveira, J. R. M. PDGF Family expression in glioblastoma multiforme: data compilation from ivy glioblastoma atlas project database. Sci. Rep. 7, 15271 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Liu, T. et al. PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nat. Commun. 9, 3439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Williams, L. T. Signal transduction by the platelet-derived growth factor receptor. Science 243, 1564–1570 (1989).

    Article  CAS  PubMed  Google Scholar 

  243. Tu, Y. et al. Expression of EphrinB2 and EphB4 in glioma tissues correlated to the progression of glioma and the prognosis of glioblastoma patients. Clin. Transl. Oncol. 14, 214–220 (2012).

    Article  CAS  PubMed  Google Scholar 

  244. Uhl, C. et al. EphB4 mediates resistance to antiangiogenic therapy in experimental glioma. Angiogenesis 21, 873–881 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Audero, E. et al. Expression of angiopoietin-1 in human glioblastomas regulates tumor-induced angiogenesis: in vivo and in vitro studies. Arterioscler. Thromb. Vasc. Biol. 21, 536–541 (2001).

    Article  CAS  PubMed  Google Scholar 

  246. Park, J. S. et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 30, 953–967 (2016).

    Article  CAS  PubMed  Google Scholar 

  247. Chae, S. S. et al. Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin. Cancer Res. 16, 3618–3627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Jones, C. A. et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat. Med. 14, 448–453 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Cai, H. et al. Roundabout4 suppresses glioma-induced endothelial cell proliferation, migration and tube formation in vitro by inhibiting VEGR2-mediated PI3K/AKT and FAK signaling pathways. Cell Physiol. Biochem. 35, 1689–1705 (2015).

    Article  CAS  PubMed  Google Scholar 

  250. Tchaicha, J. H., Mobley, A. K., Hossain, M. G., Aldape, K. D. & McCarty, J. H. A mosaic mouse model of astrocytoma identifies alphavbeta8 integrin as a negative regulator of tumor angiogenesis. Oncogene 29, 4460–4472 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  252. Vásquez, X., Sánchez-Gómez, P. & Palma, V. Netrin-1 in Glioblastoma neovascularization: the new partner in crime? Int. J. Mol. Sci. https://doi.org/10.3390/ijms22158248 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Angelucci, C., Lama, G. & Sica, G. Multifaceted functional role of semaphorins in Glioblastoma. Int. J. Mol. Sci. 20, 2144 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Schwab, M. et al. Nucleolin is expressed in human fetal brain development and reactivated in human glial brain tumors regulating angiogenesis and vascular metabolism. bioRxiv https://doi.org/10.1101/2020.10.14.337824 (2020). This study identifies nucleolin as a neurodevelopmental factor reactivated in glioma that positively regulates sprouting angiogenesis and endothelial metabolism, having future implications for therapeutic targeting of glioma.

    Article  Google Scholar 

  255. Ta, S. et al. Variants of WNT7A and GPR124 are associated with hemorrhagic transformation following intravenous thrombolysis in ischemic stroke. CNS Neurosci. Ther. 27, 71–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  256. Reis, M. et al. Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression. J. Exp. Med. 209, 1611–1627 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Martin, M. et al. Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science 375, eabm4459 (2022). This study describes genetically engineered WNT7A ligands that stimulate WNT activation in a CNS-specific manner via activation of a GPR124–RECK receptor complex aimed at protecting BBB function and at mitigating glioblastoma expansion and ischaemic stroke infarction.

    Article  CAS  PubMed  Google Scholar 

  258. Bassett, E. A. et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. eLife 5, e16764 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Liu, X. et al. TROY interacts with RKIP to promote glioma development. Oncogene 38, 1544–1559 (2019).

    Article  CAS  PubMed  Google Scholar 

  260. Griveau, A. et al. A glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell 33, 874–889.e877 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849.e821 (2019). This study reports on scRNA-seq data from 28 tumours, bulk genetic and expression analysis of 401 specimens from The Cancer Genome Atlas, functional approaches and single-cell lineage tracing to provide a blueprint for glioblastoma, integrating the malignant cell programmes, their plasticity and their modulation by genetic drivers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Suvà, M. L. et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157, 580–594 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Suvà, M. L. & Tirosh, I. The glioma stem cell model in the era of single-cell genomics. Cancer Cell 37, 630–636 (2020).

    Article  PubMed  Google Scholar 

  264. Tirosh, I. et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 539, 309–313 (2016). This study profiles 4,347 single cells from human oligodendrogliomas by scRNA-seq and reconstructs their developmental programmes from genome-wide expression signatures, providing insight into the cellular architecture of oligodendrogliomas at single-cell resolution.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Xie, Y. et al. Key molecular alterations in endothelial cells in human glioblastoma uncovered through single-cell RNA sequencing. JCI Insight https://doi.org/10.1172/jci.insight.150861 (2021). This study applies scRNA-seq to freshly isolated ECs from human glioblastoma to construct a molecular atlas of human brain endothelium, providing molecular insight into the heterogeneity of the human BBB and its molecular alteration in glioblastoma.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Tirosh, I. & Suvà, M. L. Dissecting human gliomas by single-cell RNA sequencing. Neuro Oncol. 20, 37–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  267. Couturier, C. P. et al. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat. Commun. 11, 3406 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Toms, S. A., Ferson, D. Z. & Sawaya, R. Basic surgical techniques in the resection of malignant gliomas. J. Neurooncol 42, 215–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  269. Akeret, K. et al. Anatomical phenotyping and staging of brain tumours. Brain https://doi.org/10.1093/brain/awab352 (2021).

    Article  Google Scholar 

  270. Salazar, O. M. & Rubin, P. The spread of glioblastoma multiforme as a determining factor in the radiation treated volume. Int. J. Radiat. Oncol. Biol. Phys. 1, 627–637 (1976).

    Article  CAS  PubMed  Google Scholar 

  271. Burger, P. C., Heinz, E. R., Shibata, T. & Kleihues, P. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J. Neurosurg. 68, 698–704 (1988).

    Article  CAS  PubMed  Google Scholar 

  272. Rutledge, W. C., Ko, N. U., Lawton, M. T. & Kim, H. Hemorrhage rates and risk factors in the natural history course of brain arteriovenous malformations. Transl. stroke Res. 5, 538–542 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Lawton, M. T. et al. Brain arteriovenous malformations. Nat. Rev. Dis. Prim. 1, 15008 (2015).

    Article  PubMed  Google Scholar 

  274. Rigamonti, D. et al. Cerebral cavernous malformations. N. Engl. J. Med. 319, 343–347 (1988).

    Article  CAS  PubMed  Google Scholar 

  275. Choquet, H., Pawlikowska, L., Lawton, M. T. & Kim, H. Genetics of cerebral cavernous malformations: current status and future prospects. J. Neurosurg. Sci. 59, 211–220 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Malinverno, M. et al. Endothelial cell clonal expansion in the development of cerebral cavernous malformations. Nat. Commun. 10, 2761 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Duran, D. et al. Human genetics and molecular mechanisms of vein of Galen malformation. J. Neurosurg. Pediatr. 21, 367–374 (2018).

    Article  PubMed  Google Scholar 

  278. Elhammady, M. S., Ambekar, S. & Heros, R. C. Epidemiology, clinical presentation, diagnostic evaluation, and prognosis of cerebral dural arteriovenous fistulas. Handb. Clin. Neurol. 143, 99–105 (2017).

    Article  PubMed  Google Scholar 

  279. Yuval, Y. et al. Prenatal diagnosis of vein of Galen aneurysmal malformation: report of two cases with proposal for prognostic indices. Prenat. Diagn. 17, 972–977 (1997).

    Article  CAS  PubMed  Google Scholar 

  280. Neil, J. A., Li, D., Stiefel, M. F. & Hu, Y. C. Symptomatic de novo arteriovenous malformation in an adult: case report and review of the literature. Surg. Neurol. Int. 5, 148 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  281. You, L. R. et al. Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature 435, 98–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  282. Mack, J. J. & Iruela-Arispe, M. L. NOTCH regulation of the endothelial cell phenotype. Curr. Opin. Hematol. 25, 212–218 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Leblanc, G. G., Golanov, E., Awad, I. A. & Young, W. L. Biology of vascular malformations of the brain. Stroke 40, e694–e702 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  284. Whitehead, K. J., Smith, M. C. & Li, D. Y. Arteriovenous malformations and other vascular malformation syndromes. Cold Spring Harb. Perspect. Med. 3, a006635 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Winkler, E. A. et al. Defective vascular signaling & prospective therapeutic targets in brain arteriovenous malformations. Neurochem. Int. 126, 126–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  286. ten Dijke, P. & Arthur, H. M. Extracellular control of TGFβ signalling in vascular development and disease. Nat. Rev. Mol. Cell Biol. 8, 857 (2007).

    Article  PubMed  Google Scholar 

  287. McAllister, K. A. et al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 8, 345–351 (1994).

    Article  CAS  PubMed  Google Scholar 

  288. Johnson, D. W. et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat. Genet. 13, 189–195 (1996).

    Article  CAS  PubMed  Google Scholar 

  289. Zhu, W., Ma, L., Zhang, R. & Su, H. The roles of endoglin gene in cerebrovascular diseases. Neuroimmunol. Neuroinflamm. 4, 199–210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Moustakas, A. & Heldin, C. H. The regulation of TGFbeta signal transduction. Development 136, 3699–3714 (2009).

    Article  CAS  PubMed  Google Scholar 

  291. Urness, L. D., Sorensen, L. K. & Li, D. Y. Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat. Genet. 26, 328–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  292. Govani, F. S. & Shovlin, C. L. Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur. J. Hum. Genet. 17, 860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Ricard, N. et al. BMP9 and BMP10 are critical for postnatal retinal vascular remodeling. Blood 119, 6162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Ouarne, M. et al. BMP9, but not BMP10, acts as a quiescence factor on tumor growth, vessel normalization and metastasis in a mouse model of breast cancer. J. Exp. Clin. Cancer Res. 37, 209 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Wang, K. et al. Perturbations of BMP/TGF-β and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). J. Med. Genet. 55, 675–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  296. Crist, A. M., Lee, A. R., Patel, N. R., Westhoff, D. E. & Meadows, S. M. Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of hereditary hemorrhagic telangiectasia. Angiogenesis 21, 363–380 (2018). This study aims to create and characterize an inducible, EC-specific Smad4-knockout mouse to study AVM development in HHT-associated phenotypes, thereby linking the TGFβ and VEGF signalling pathways in AVM pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Tual-Chalot, S., Oh, P. & Arthur, H. Mouse models of hereditary haemorrhagic telangiectasia: recent advances and future challenges. Front. Genet. https://doi.org/10.3389/fgene.2015.00025 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Saito, T. et al. Structural basis of the human endoglin-BMP9 interaction: insights into BMP signaling and HHT1. Cell Rep. 19, 1917–1928 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Roman, B. L. & Hinck, A. P. ALK1 signaling in development and disease: new paradigms. Cell. Mol. Life Sci. 74, 4539–4560 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Suzuki, Y. et al. BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J. Cell Sci. 123, 1684–1692 (2010).

    Article  CAS  PubMed  Google Scholar 

  301. Park, S. O. et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 119, 3487–3496 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Garrido-Martin, E. M. et al. Common and distinctive pathogenetic features of arteriovenous malformations in hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 animal models–brief report. Arterioscler. Thromb. Vasc. Biol. 34, 2232–2236 (2014).

    Article  CAS  PubMed  Google Scholar 

  303. Bernabeu, C., Bayrak-Toydemir, P., McDonald, J. & Letarte, M. Potential second-hits in hereditary hemorrhagic telangiectasia. J. Clin. Med. https://doi.org/10.3390/jcm9113571 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Knudson, A. G. Cancer genetics through a personal retrospectroscope. Genes Chromosomes Cancer 38, 288–291 (2003).

    Article  CAS  PubMed  Google Scholar 

  305. David, L., Mallet, C., Mazerbourg, S., Feige, J. J. & Bailly, S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109, 1953–1961 (2007).

    Article  CAS  PubMed  Google Scholar 

  306. Boon, L. M., Mulliken, J. B. & Vikkula, M. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr. Opin. Genet. Dev. 15, 265–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  307. Moteki, Y., Akagawa, H., Niimi, Y., Okada, Y. & Kawamata, T. Novel RASA1 mutations in Japanese pedigrees with capillary malformation-arteriovenous malformation. Brain Dev. https://doi.org/10.1016/j.braindev.2019.06.003 (2019).

    Article  PubMed  Google Scholar 

  308. Revencu, N. et al. RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum. Mutat. 34, 1632–1641 (2013).

    Article  CAS  PubMed  Google Scholar 

  309. Revencu, N. et al. RASA1 mosaic mutations in patients with capillary malformation-arteriovenous malformation. J. Med. Genet. https://doi.org/10.1136/jmedgenet-2019-106024 (2019).

    Article  PubMed  Google Scholar 

  310. Zeng, X. et al. EphrinB2-EphB4-RASA1 signaling in human cerebrovascular development and disease. Trends Mol. Med. 25, 265–286 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Bai, J., Wang, Y. J., Liu, L. & Zhao, Y. L. Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J. Int. Med. Res. 42, 405–415 (2014).

    Article  PubMed  Google Scholar 

  312. Kawasaki, J. et al. RASA1 functions in EPHB4 signaling pathway to suppress endothelial mTORC1 activity. J. Clin. Invest. 124, 2774–2784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Amyere, M. et al. Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation-arteriovenous malformation (CM-AVM2) deregulating RAS-MAPK signaling. Circulation 136, 1037–1048 (2017).

    Article  CAS  PubMed  Google Scholar 

  314. Ren, A. A. et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature 594, 271–276 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Limaye, N. et al. Somatic activating PIK3CA mutations cause venous malformation. Am. J. Hum. Genet. 97, 914–921 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Limaye, N. et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat. Genet. 41, 118–124 (2009).

    Article  CAS  PubMed  Google Scholar 

  317. Sun, B. et al. The rs9509 polymorphism of MMP-9 is associated with risk of hemorrhage in brain arteriovenous malformations. J. Clin. Neurosci. 19, 1287–1290 (2012).

    Article  CAS  PubMed  Google Scholar 

  318. Luks, V. L. et al. Lymphatic and other vascular malformative/overgrowth disorders are caused by somatic mutations in PIK3CA. J. Pediatr. 166, 1048–1054.e1041-1045 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Shirley, M. D. et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N. Engl. J. Med. 368, 1971–1979 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Couto, J. A. et al. Endothelial cells from capillary malformations are enriched for somatic GNAQ mutations. Plast. Reconstr. Surg. 137, 77e–82e (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Couto, JavierA. et al. A somatic MAP3K3 mutation is associated with verrucous venous malformation. Am. J. Hum. Genet. 96, 480–486 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Couto, J. A. et al. Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. Am. J. Hum. Genet. 100, 546–554 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Hong, T. et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain 142, 23–34 (2019).

    Article  PubMed  Google Scholar 

  324. Li, Q. F., Decker-Rockefeller, B., Bajaj, A. & Pumiglia, K. Activation of Ras in the vascular endothelium induces brain vascular malformations and hemorrhagic stroke. Cell Rep. 24, 2869–2882 (2018).

    Article  CAS  PubMed  Google Scholar 

  325. Oka, M. et al. KRAS G12D or G12V mutation in human brain arteriovenous malformations. World Neurosurg. 126, e1365–e1373 (2019).

    Article  PubMed  Google Scholar 

  326. Chen, Y. et al. Interleukin-6 involvement in brain arteriovenous malformations. Ann. Neurol. 59, 72–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  327. Simon, M. et al. Association of a polymorphism of the ACVRL1 gene with sporadic arteriovenous malformations of the central nervous system. J. Neurosurg. 104, 945–949 (2006).

    Article  CAS  PubMed  Google Scholar 

  328. Pawlikowska, L. et al. Polymorphisms in transforming growth factor-beta-related genes ALK1 and ENG are associated with sporadic brain arteriovenous malformations. Stroke 36, 2278–2280 (2005).

    Article  CAS  PubMed  Google Scholar 

  329. Kim, H. et al. Common variants in interleukin-1-beta gene are associated with intracranial hemorrhage and susceptibility to brain arteriovenous malformation. Cerebrovasc. Dis. 27, 176–182 (2009).

    Article  CAS  PubMed  Google Scholar 

  330. Su, H. et al. Reduced expression of integrin alphavbeta8 is associated with brain arteriovenous malformation pathogenesis. Am. J. Pathol. 176, 1018–1027 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Mikhak, B. et al. Angiopoietin-like 4 (ANGPTL4) gene polymorphisms and risk of brain arteriovenous malformations. Cerebrovasc. Dis. 31, 338–345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Weinsheimer, S. et al. G protein-coupled receptor 124 (GPR124) gene polymorphisms and risk of brain arteriovenous malformation. Transl. Stroke Res. 3, 418–427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Chen, H. et al. Polymorphisms of the vascular endothelial growth factor A gene and susceptibility to sporadic brain arteriovenous malformation in a Chinese population. J. Clin. Neurosci. 18, 549–553 (2011).

    Article  CAS  PubMed  Google Scholar 

  334. Zhao, Y. et al. The rs522616 polymorphism in the matrix metalloproteinase-3 (MMP-3) gene is associated with sporadic brain arteriovenous malformation in a Chinese population. J. Clin. Neurosci. 17, 1568–1572 (2010).

    Article  CAS  PubMed  Google Scholar 

  335. Van Raamsdonk, C. D. et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457, 599 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  336. Pan, P. et al. Review of treatment and therapeutic targets in brain arteriovenous malformation. J. Cereb. Blood Flow. Metab. 41, 3141–3156 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Scherschinski, L. et al. Genetics and emerging therapies for brain arteriovenous malformations. World Neurosurg. 159, 327–337 (2022).

    Article  PubMed  Google Scholar 

  338. Wen, P. Y. et al. Dabrafenib plus trametinib in patients with BRAF V600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 23, 53–64 (2022).

    Article  CAS  PubMed  Google Scholar 

  339. Selvasaravanan, K. D. et al. The limitations of targeting MEK signalling in Glioblastoma therapy. Sci. Rep. 10, 7401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Carlson, T. R. et al. Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice. Proc. Natl Acad. Sci. USA 102, 9884–9889 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Krebs, L. T. et al. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 18, 2469–2473 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Murphy, P. A. et al. Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels. Proc. Natl Acad. Sci. USA 111, 18007–18012 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Murphy, P. A. et al. Notch4 normalization reduces blood vessel size in arteriovenous malformations. Sci. Transl. Med. 4, 117ra118 (2012).

    Article  Google Scholar 

  344. ZhuGe, Q. et al. Notch-1 signalling is activated in brain arteriovenous malformations in humans. Brain 132, 3231–3241 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  345. Sivarapatna, A. et al. Arterial specification of endothelial cells derived from human induced pluripotent stem cells in a biomimetic flow bioreactor. Biomaterials 53, 621–633 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Orsenigo, F. et al. Mapping endothelial-cell diversity in cerebral cavernous malformations at single-cell resolution. Elife https://doi.org/10.7554/eLife.61413 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  347. Chavkin, N. W. & Hirschi, K. K. Single cell analysis in vascular biology. Front. Cardiovasc. Med. https://doi.org/10.3389/fcvm.2020.00042 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  348. Morgan, M. K., Davidson, A. S., Assaad, N. N. A. & Stoodley, M. A. Critical review of brain AVM surgery, surgical results and natural history in 2017. Acta Neurochir. 159, 1457–1478 (2017).

    Article  PubMed  Google Scholar 

  349. William, L. Y. et al. Arteriovenous malformation. J. Neurosurg. 106, 731–732 (2007).

    Article  Google Scholar 

  350. Al-Olabi, L. et al. Mosaic RAS/MAPK variants cause sporadic vascular malformations which respond to targeted therapy. J. Clin. Invest. 128, 1496–1508 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  351. Gould, J. Breaking down the epidemiology of brain cancer. Nature 561, S40–s41 (2018).

    Article  CAS  PubMed  Google Scholar 

  352. Sharma, A. et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell 183, 377–394.e321 (2020). This study uses scRNA-seq to unravel a previously unexplored oncofetal reprogramming of the liver tumour ecosystem, providing novel targets for therapeutic interventions, and opening avenues for application to other cancers and diseases.

    Article  CAS  PubMed  Google Scholar 

  353. Guo, F.-H. et al. Single-cell transcriptome analysis reveals embryonic endothelial heterogeneity at spatiotemporal level and multifunctions of microRNA-126 in mice. Arterioscler. Thromb. Vasc. Biol. 42, 326–342 (2022). This study assesses the transcriptional heterogeneity of developmental ECs at the spatio-temporal level, revealing the changes of embryonic EC clustering upon endothelium-specific miR-126 knockout.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Wälchli, T., Farnhammer, F. & Fish, J. E. MicroRNA-based regulation of embryonic endothelial cell heterogeneity at single-cell resolution. Arterioscler. Thromb. Vasc. Biol. 42, 343–347 (2022).

    Article  PubMed  Google Scholar 

  355. Haque, A., Engel, J., Teichmann, S. A. & Lonnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 75 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  356. Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Ståhl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78 (2016).

    Article  PubMed  Google Scholar 

  358. Ali, H. R. et al. Imaging mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer. Nat. Cancer 1, 163–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  359. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Hughes, A. J. et al. Single-cell western blotting. Nat. Methods 11, 749–755 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Eklund, L., Bry, M. & Alitalo, K. Mouse models for studying angiogenesis and lymphangiogenesis in cancer. Mol. Oncol. 7, 259–282 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Papagiannaki, C. et al. Development of an angiogenesis animal model featuring brain arteriovenous malformation histological characteristics. J. NeuroInterventional Surg. 9, 204 (2017).

    Article  Google Scholar 

  363. Tsukada, Y. et al. An in vivo model allowing continuous observation of human vascular formation in the same animal over time. Sci. Rep. 11, 745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Zhu, H. et al. Inflammation-mediated angiogenesis in Ischemic stroke. Front. Cell. Neurosci. https://doi.org/10.3389/fncel.2021.652647 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  365. Ha, E. T. et al. Chronic inflammation drives glioma growth: cellular and molecular factors responsible for an immunosuppressive microenvironment. Neuroimmunol. Neuroinflamm. 1, 66–76 (2014).

    Article  Google Scholar 

  366. Murat, A. et al. Modulation of angiogenic and inflammatory response in glioblastoma by hypoxia. PLoS ONE 4, e5947 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  367. Garcia, F. J. et al. Single-cell dissection of the human brain vasculature. Nature 603, 893–899 (2022). This study reports on single-cell characterization of the human healthy cerebrovasculature and the huamn diseased cerebrovasculature using both ex vivo fresh tissue experimental enrichment and post-mortem in silico sorting of human cortical tissue samples, uncovering human-specific expression patterns along the arteriovenous axis and determining previously uncharacterized cell type-specific markers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Gerrits, E. et al. Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex. Nat. Neurosci. 25, 1034–1048 (2022).

    Article  CAS  PubMed  Google Scholar 

  370. Ghobrial, M. et al. The human brain vasculature shows a distinct expression pattern of SARS-CoV-2 entry factors. bioRxiv https://doi.org/10.1101/2020.10.10.334664 (2020). This study reports on a molecular atlas of the expression patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry-associated genes and SARS-CoV-2 interaction partners in human (and mouse) adult and fetal brain as well as in multiple non-CNS tissues in scRNA-seq data across various datasets.

    Article  Google Scholar 

  371. Yang, A. C. et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 595, 565–571 (2021). This study profiled 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals and 8 patients with COVID-19, providing a molecular framework to understand COVID-19-related neurological diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019). This study reports on single-nucleus RNA-sequencing analysis to study cell types in the middle temporal gyrus of human cortex compared with similar mouse cortical tissue, identifying a highly diverse set of excitatory and inhibitory neuron types, emphasizing species-specific features.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Rosińska, S. & Gavard, J. Tumor vessels fuel the fire in glioblastoma. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22126514 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  374. Segura, I., De Smet, F., Hohensinner, P. J., Ruiz de Almodovar, C. & Carmeliet, P. The neurovascular link in health and disease: an update. Trends Mol. Med. 15, 439–451 (2009).

    Article  CAS  PubMed  Google Scholar 

  375. Amunts, K. & Zilles, K. Architectonic mapping of the human brain beyond brodmann. Neuron 88, 1086–1107 (2015).

    Article  CAS  PubMed  Google Scholar 

  376. Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  377. Eberwine, J., Sul, J.-Y., Bartfai, T. & Kim, J. The promise of single-cell sequencing. Nat. Methods 11, 25–27 (2014).

    Article  CAS  PubMed  Google Scholar 

  378. Hasle, N. et al. High-throughput, microscope-based sorting to dissect cellular heterogeneity. Mol. Syst. Biol. 16, e9442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank N. Chu Ji for help with the illustrations, P. Nicholson for providing neuroradiological images of the brain AVMs and brain tumours, J. Fish, M. Ghobrial, H. Zhong and F. Farnhammer for discussion regarding the scRNA-seq data and A. Thomson for help with English proofreading. T.W. was supported by the OPO Foundation, Swiss Cancer Research (KFS-3880-02-2016-R and KFS-4758-02-2019-R), the Stiftung zur Krebsbekampfung, the Kurt und Senta Herrmann Foundation, Forschungskredit of the University of Zurich, the Zurich Cancer League, the Theodor und Ida Herzog Egli Foundation, the Novartis Foundation for Medical-Biological Research and the HOPE Foundation.

Author information

Authors and Affiliations

Authors

Contributions

T.W. had the idea for the Review, wrote the manuscript with J.B., designed the figures and, with J.B., created the figures. T.W. and J.B. researched data for the article, provided substantial contributions to discussion of its content, and reviewed and edited the manuscript before submission. P.C., G.Z., P.P.M., K.D.B. and I.R. provided substantial contributions to discussion of the article’s content and reviewed and edited the manuscript before submission. I.R. also helped write the article.

Corresponding author

Correspondence to Thomas Wälchli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks S. Liebner; J. Siegenthaler; R. Wang, who co-reviewed with S. Yuan; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Blood–brain barrier

(BBB). A physiological barrier formed by the brain endothelium to regulate trafficking of most compounds from the blood to the brain.

Brain arteriovenous malformations

High-flow low-resistance vascular malformations characterized by a loss of vascular organization, a network of tortuous, dysplastic vascular channels (termed ‘nidus’) in between one or multiple feeding arteries and one or multiple draining veins in lieu of a normal intervening capillary network.

Brain vascular malformations

Malformations characterized by abnormal blood vessel growth and altered maturation of the vessel wall, including brain arteriovenous malformations, cerebral cavernous malformations, developmental venous anomalies, dural and pial arteriovenous fistulas, capillary telangiectasias, vein of Galen malformations and carotid-cavernous fistulae.

Glial brain tumours

Primary brain tumours originating from neuroglial stem or progenitor cells, accounting for almost 30% of all primary brain tumours and for 80% of all malignant primary brain tumours.

Glioma (or glioblastoma) stem cell

(GSC). A subpopulation of tumour cells with stem cell-like properties that contribute to tumour initiation, progression and resistance to anticancer therapies.

Neurovascular link

(NVL). The similar appearance and coordinated guidance of the cellular and subcellular elements of both the vascular system and the nervous system.

Neurovascular unit

(NVU). The functional unit of the complex crosstalk between endothelial cells and perivascular cells in the perivascular niche.

Perivascular niche

(PVN). The microenvironment around a blood vessel; it includes endothelial cells and perivascular cells such as astrocytes, pericytes, neurons, stem cells, microglia and vascular smooth muscle cells.

Reactivated developmental signalling pathways

Molecular signalling cues and pathways that are active during embryonic and/or postnatal vascular brain development, are silenced in the adult healthy brain vasculature and might be reactivated in vascular-dependent CNS diseases, including brain tumours and brain vascular malformations.

Single-nucleotide polymorphisms

A somatic mutation characterized by a single nucleotide change in the DNA sequence that can modulate biological mechanisms. Somatic mutations do not occur in the germ line but occur in a postzygotic progenitor or differentiated cell and are well described in both CNS and non-CNS cancer development.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wälchli, T., Bisschop, J., Carmeliet, P. et al. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 24, 271–298 (2023). https://doi.org/10.1038/s41583-023-00684-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-023-00684-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer