Abstract
The clinical diagnosis of renal cell carcinoma (RCC) is constantly evolving. Diagnostic imaging of RCC relying on enhanced computed tomography (CT) and magnetic resonance imaging (MRI) is commonly used for renal mass characterization and assessment of tumour thrombosis, whereas pathology is the gold standard for establishing diagnosis. However, molecular imaging is rapidly improving the clinical management of RCC, particularly clear-cell RCC. Molecular imaging aids in the non-invasive visualization and characterization of specific biomarkers such as carbonic anhydrase IX and CD70 within the tumours, which help to assess tumour heterogeneity and status. Target-specific molecular imaging of RCCs will substantially improve the diagnostic landscape of RCC and will further facilitate clinical decision-making regarding initial staging and re-staging, monitoring of recurrence and metastasis, patient stratification and selection, and the prediction and evaluation of treatment responses.
Key points
-
Metabolic imaging detects proliferation and metabolic heterogeneity in renal cell carcinoma (RCC).
-
99mTc-sestamibi single-photon emission computed tomography–can help to identify benign and malignant renal masses.
-
Carbonic anhydrase IX is an established biomarker for clear-cell renal cell carcinoma (ccRCC), and the value of agents targeting this marker is being investigated in clinical settings.
-
CD70 is an emerging biomarker for ccRCC, and preliminary evidence suggests the unique value of CD70-targeted tracers in ccRCC imaging and of chimeric antigen receptor T cells in treating metastatic ccRCC.
-
Molecular imaging tracers targeting angiogenesis or immune checkpoints might be useful in assessing treatment responses in RCC, but well-designed clinical trials are needed.
-
Therapeutic radiopharmaceuticals with improved therapeutic index and safety profiles targeting carbonic anhydrase IX and CD70 are needed to achieve target-specific theranostics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
27,99 € / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
209,00 € per year
only 17,42 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Bukavina, L. et al. Epidemiology of renal cell carcinoma: 2022 update. Eur. Urol. 82, 529–542 (2022).
Escudier, B. et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 30, 706–720 (2019).
Schieda, N. et al. Active surveillance of renal masses: the role of radiology. Radiology 302, 11–24 (2022).
Siva, S. et al. Radiotherapy for renal cell carcinoma: renaissance of an overlooked approach. Nat. Rev. Urol. 14, 549–563 (2017).
Young, M. et al. Renal cell carcinoma. Lancet 404, 476–491 (2024).
Ghoreifi, A., Vaishampayan, U., Yin, M., Psutka, S. P. & Djaladat, H. Immune checkpoint inhibitor therapy before nephrectomy for locally advanced and metastatic renal cell carcinoma: a review. JAMA Oncol. 10, 240–248, (2024).
Catalano, M. et al. Tyrosine kinase and immune checkpoints inhibitors in favorable risk metastatic renal cell carcinoma: Trick or treat? Pharmacol. Ther. 249, 108499 (2023).
Wang, Y. et al. Evolution of cell therapy for renal cell carcinoma. Mol. Cancer 23, 8 (2024).
Mankoff, D. A. A definition of molecular imaging. J. Nucl. Med. 48, 18N, 21N (2007).
Wei, W. et al. ImmunoPET: concept, design, and applications. Chem. Rev. 120, 3787–3851 (2020).
Rahmim, A. et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur. J. Nucl. Med. Mol. Imaging 46, 501–518 (2019).
James, M. L. & Gambhir, S. S. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev. 92, 897–965 (2012).
Ametamey, S. M., Honer, M. & Schubiger, P. A. Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008).
Zhou, X., Shi, B., Huang, G., Liu, J. & Wei, W. Trends in cancer imaging. Trends Cancer https://doi.org/10.1016/j.trecan.2024.08.006 (2024).
Cheal, S. M., Chung, S. K., Vaughn, B. A., Cheung, N. V. & Larson, S. M. Pretargeting: a path forward for radioimmunotherapy. J. Nucl. Med. 63, 1302–1315 (2022).
Larson, S. M., Carrasquillo, J. A., Cheung, N. K. & Press, O. W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer 15, 347–360 (2015).
Aboagye, E. O., Barwick, T. D. & Haberkorn, U. Radiotheranostics in oncology: making precision medicine possible. CA Cancer J. Clin. 73, 255–274 (2023).
Herrmann, K. et al. Radiotheranostics: a roadmap for future development. Lancet Oncol. 21, e146–e156 (2020).
Ljungberg, B. et al. European Association of Urology guidelines on renal cell carcinoma: the 2022 update. Eur. Urol. 82, 399–410 (2022).
Rathmell, W. K. et al. Management of metastatic clear cell renal cell carcinoma: ASCO guideline. J. Clin. Oncol. 40, 2957–2995 (2022).
Rossi, S. H., Prezzi, D., Kelly-Morland, C. & Goh, V. Imaging for the diagnosis and response assessment of renal tumours. World J. Urol. 36, 1927–1942 (2018).
Furrer, M. A. et al. Comparison of the diagnostic performance of contrast-enhanced ultrasound with that of contrast-enhanced computed tomography and contrast-enhanced magnetic resonance imaging in t he evaluation of renal masses: a systematic review and meta-analysis. Eur. Urol. Oncol. 3, 464–473 (2020).
Vogel, C. et al. Imaging in suspected renal-cell carcinoma: systematic review. Clin. Genitourin. Cancer 17, e345–e355 (2019).
Shinagare, A. B. et al. Lexicon for renal mass terms at CT and MRI: a consensus of the society of abdominal radiology disease-focused panel on renal cell carcinoma. Abdom. Radiol. 46, 703–722 (2021).
Hindman, N. et al. Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology 265, 468–477 (2012).
Choudhary, S., Rajesh, A., Mayer, N. J., Mulcahy, K. A. & Haroon, A. Renal oncocytoma: CT features cannot reliably distinguish oncocytoma from other renal neoplasms. Clin. Radiol. 64, 517–522 (2009).
Ljungberg, B. et al. EAU Guidelines on Renal Cell Carcinoma. European Association of Urology https://d56bochluxqnz.cloudfront.net/documents/full-guideline/EAU-Guidelines-on-Renal-Cell-Carcinoma-2024.pdf (2024).
Sountoulides, P., Metaxa, L. & Cindolo, L. Atypical presentations and rare metastatic sites of renal cell carcinoma: a review of case reports. J. Med. Case Rep. 5, 429 (2011).
Angelelli, G., Mancini, M., Pignataro, P., Pedote, P. & Scardapane, A. Multidetector computed tomography in the study of pancreatic metastases. Radiol. Med. 117, 369–377 (2012).
Roussel, E. et al. Novel imaging methods for renal mass characterization: a collaborative review. Eur. Urol. 81, 476–488 (2022).
Chakraborty, S., Balan, M., Sabarwal, A., Choueiri, T. K. & Pal, S. Metabolic reprogramming in renal cancer: events of a metabolic disease. Biochim. Biophys. Acta Rev. Cancer 1876, 188559 (2021).
Hu, J. et al. Multi-omic profiling of clear cell renal cell carcinoma identifies metabolic reprogramming associated with disease progression. Nat. Genet. 56, 442–457 (2024).
Zhao, Y. et al. 2-[18F]FDG PET/CT parameters associated with WHO/ISUP grade in clear cell renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 48, 570–579 (2021).
Alongi, P. et al. Recurrent renal cell carcinoma: clinical and prognostic value of FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 43, 464–473 (2016).
Schug, Z. T. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57–71 (2015).
Kim, D. et al. Visualizing cancer-originating acetate uptake through monocarboxylate transporter 1 in reactive astrocytes in the glioblastoma tumor microenvironment. Neuro Oncol. 26, 843–857 (2024).
Kim, S. et al. The roles of 11C-acetate PET/CT in predicting tumor differentiation and survival in patients with cerebral glioma. Eur. J. Nucl. Med. Mol. Imaging 45, 1012–1020 (2018).
Oyama, N. et al. 11C-Acetate PET imaging for renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 36, 422–427 (2009).
Kotzerke, J. et al. [1-11C]acetate uptake is not increased in renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 34, 884–888 (2007).
Ho, C. L. et al. Dual-tracer PET/CT in renal angiomyolipoma and subtypes of renal cell carcinoma. Clin. Nucl. Med. 37, 1075–1082 (2012).
Figtree, G. A. et al. Clinical outcomes in patients with ST-segment elevation MI and No standard modifiable cardiovascular risk factors. JACC Cardiovasc. Interv. 15, 1167–1175 (2022).
Tsukamoto, S., Kawabata, K., Kawamura, H., Takata, K. & Hosono, M. Differentiating brown tumor from bone metastasis in parathyroid cancer using 18F-FDG PET and 99mTc-MIBI SPECT. Clin. Nucl. Med. 49, 444–446 (2024).
Deng, Z., Dong, A., Zhao, M., Tang, Y. & Liu, Y. Incidental primary breast lymphoma on 99mTc-sestamibi myocardial perfusion imaging with SPECT/CT. Clin. Nucl. Med. 44, e492–e494 (2019).
Urbano, N., Scimeca, M., Tancredi, V., Bonanno, E. & Schillaci, O. 99mTC-sestamibi breast imaging: current status, new ideas and future perspectives. Semin. Cancer Biol. 84, 302–309 (2022).
Pace, L., Del Vecchio, S. & Salvatore, M. Technetium 99m sestamibi in multiple myeloma. Radiology 234, 312–313; author reply 313 (2005).
Rowe, S. P. et al. Initial experience using 99mTc-MIBI SPECT/CT for the differentiation of oncocytoma from renal cell carcinoma. Clin. Nucl. Med. 40, 309–313 (2015).
Zhu, H. et al. Dual-phase 99mTc-MIBI SPECT/CT in the characterization of enhancing solid renal tumors: a single-institution study of 147 cases. Clin. Nucl. Med. 45, 765–770 (2020).
Parihar, A. S. et al. Diagnostic accuracy of 99mTc-sestamibi SPECT/CT for characterization of solid renal masses. J. Nucl. Med. 64, 90–95 (2023).
Basile, G. et al. The role of 99mTc-sestamibi single-photon emission computed tomography/computed tomography in the diagnostic pathway for renal masses: a systematic review and meta-analysis. Eur. Urol. 85, 63–71 (2024).
Wilson, M. P. et al. Diagnostic accuracy of 99mTc-sestamibi SPECT/CT for detecting renal oncocytomas and other benign renal lesions: a systematic review and meta-analysis. Abdom. Radiol. 45, 2532–2541 (2020).
Henry, N. L. & Hayes, D. F. Cancer biomarkers. Mol. Oncol. 6, 140–146 (2012).
O’Connor, J. P. et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 14, 169–186 (2017).
Liao, C., Hu, L. & Zhang, Q. Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma. Nat. Rev. Urol. https://doi.org/10.1038/s41585-024-00876-w (2024).
Stillebroer, A. B., Mulders, P. F., Boerman, O. C., Oyen, W. J. & Oosterwijk, E. Carbonic anhydrase IX in renal cell carcinoma: implications for prognosis, diagnosis, and therapy. Eur. Urol. 58, 75–83 (2010).
Queen, A., Bhutto, H. N., Yousuf, M., Syed, M. A. & Hassan, M. I. Carbonic anhydrase IX: a tumor acidification switch in heterogeneity and chemokine regulation. Semin. Cancer Biol. 86, 899–913 (2022).
Oosterwijk, E. et al. Antibody localization in human renal cell carcinoma: a phase I study of monoclonal antibody G250. J. Clin. Oncol. 11, 738–750 (1993).
Muselaers, C. H. et al. Indium-111-labeled girentuximab immunoSPECT as a diagnostic tool in clear cell renal cell carcinoma. Eur. Urol. 63, 1101–1106 (2013).
Hekman, M. C. H. et al. Positron emission tomography/computed tomography with 89Zr-girentuximab can aid in diagnostic dilemmas of clear cell renal cell carcinoma suspicion. Eur. Urol. 74, 257–260 (2018).
Divgi, C. R. et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol. 8, 304–310 (2007).
Wei, W., Younis, M. H., Lan, X., Liu, J. & Cai, W. Single-___domain antibody theranostics on the horizon. J. Nucl. Med. 63, 1475–1479 (2022).
Garousi, J. et al. Comparative evaluation of affibody- and antibody fragments-based CAIX imaging probes in mice bearing renal cell carcinoma xenografts. Sci. Rep. 9, 14907 (2019).
van Lith, S. A. M. et al. Novel VHH-based tracers with variable plasma half-lives for imaging of CAIX-expressing hypoxic tumor cells. Mol. Pharm. 19, 3511–3520 (2022).
Burianova, V., Kalinin, S., Supuran, C. T. & Krasavin, M. Radiotracers for positron emission tomography (PET) targeting tumour-associated carbonic anhydrase isoforms. Eur. J. Med. Chem. 213, 113046 (2021).
Chen, K. T. & Seimbille, Y. New developments in carbonic anhydrase IX-targeted fluorescence and nuclear imaging agents. Int. J. Mol. Sci. 23, 6125 (2022).
Iikuni, S., Okada, Y., Shimizu, Y., Watanabe, H. & Ono, M. Synthesis and evaluation of indium-111-labeled imidazothiadiazole sulfonamide derivative for single photon emission computed tomography imaging targeting carbonic anhydrase-IX. Bioorg. Med. Chem. Lett. 30, 127255 (2020).
Iikuni, S., Okada, Y., Shimizu, Y., Watanabe, H. & Ono, M. Modulation of the pharmacokinetics of a radioligand targeting carbonic anhydrase-IX with albumin-binding moieties. Mol. Pharm. 18, 966–975 (2021).
Wichert, M. et al. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat. Chem. 7, 241–249 (2015).
Yang, X. et al. Imaging of carbonic anhydrase IX with an 111In-labeled dual-motif inhibitor. Oncotarget 6, 33733–33742 (2015).
Lau, J. et al. PET imaging of carbonic anhydrase IX expression of HT-29 tumor xenograft mice with 68Ga-labeled benzenesulfonamides. Mol. Pharm. 13, 1137–1146 (2016).
Iikuni, S. et al. Cancer radiotheranostics targeting carbonic anhydrase-IX with 111In- and 90Y-labeled ureidosulfonamide scaffold for SPECT imaging and radionuclide-based therapy. Theranostics 8, 2992–3006 (2018).
Yang, X. et al. Targeting CAIX with [64Cu]XYIMSR-06 small molecular radiotracer enables noninvasive PET imaging of malignant glioma in U87 MG tumor cell xenograft mice. Mol. Pharm. 16, 1532–1540 (2019).
Iikuni, S., Watanabe, H., Shimizu, Y., Nakamoto, Y. & Ono, M. PET imaging and pharmacological therapy targeting carbonic anhydrase-IX high-expressing tumors using US2 platform based on bivalent ureidosulfonamide. PLoS ONE 15, e0243327 (2020).
Nakashima, K. et al. Synthesis and evaluation of (68)Ga-labeled imidazothiadiazole sulfonamide derivatives for PET imaging of carbonic anhydrase-IX. Nucl. Med. Biol. 93, 46–53 (2021).
De Silva, R. A. et al. Process validation, current good manufacturing practice production, dosimetry, and toxicity studies of the carbonic anhydrase IX imaging agent [111In]In-XYIMSR-01 for phase I regulatory approval. J. Label. Comp. Radiopharm. 64, 243–250 (2021).
Lau, J., Lin, K. S. & Benard, F. Past, present, and future: development of theranostic agents targeting carbonic anhydrase IX. Theranostics 7, 4322–4339 (2017).
Divgi, C. R. et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J. Clin. Oncol. 31, 187–194 (2013).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03849118 (2024).
Calais, J. et al. Zirconium-labelled girentuximab (89Zr-TLX250-CDx) PET/CT imaging for non-invasive diagnosis of clear cell renal cell carcinoma: results from the UCLA cohort of the ZIRCON trial. J. Nucl. Med. 64, P257–P257 (2023).
Shuch, B. et al. [89Zr]Zr-girentuximab for PET-CT imaging of clear-cell renal cell carcinoma: a prospective, open-label, multicentre, phase 3 trial. Lancet Oncol. 25, 1277–1287 (2024).
van Oostenbrugge, T. J. et al. Follow-up imaging after cryoablation of clear cell renal cell carcinoma is feasible using single photon emission computed tomography with 111In-girentuximab. Eur. J. Nucl. Med. Mol. Imaging 47, 1864–1870 (2020).
Vikram, R. et al. Papillary renal cell carcinoma: radiologic-pathologic correlation and spectrum of disease. Radiographics 29, 741–754; discussion 755–757 (2009).
Merkx, R. I. J. et al. Phase I study to assess safety, biodistribution and radiation dosimetry for 89Zr-girentuximab in patients with renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 48, 3277–3285 (2021).
Dabestani, S. et al. Long-term outcomes of follow-up for initially localised clear cell renal cell carcinoma: RECUR database analysis. Eur. Urol. Focus. 5, 857–866 (2019).
Verhoeff, S. R. et al. Lesion detection by [89Zr]Zr-DFO-girentuximab and [18F]FDG-PET/CT in patients with newly diagnosed metastatic renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 46, 1931–1939 (2019).
Turkbey, B. et al. PET/CT imaging of renal cell carcinoma with 18F-VM4-037: a phase II pilot study. Abdom. Radiol. 41, 109–118 (2016).
Doss, M. et al. Biodistribution and radiation dosimetry of the carbonic anhydrase IX imaging agent [(18) F]VM4-037 determined from PET/CT scans in healthy volunteers. Mol. Imaging Biol. 16, 739–746 (2014).
Krall, N., Pretto, F., Mattarella, M., Muller, C. & Neri, D. A. 99mTc-labeled ligand of carbonic anhydrase IX selectively targets renal cell carcinoma in vivo. J. Nucl. Med. 57, 943–949 (2016).
Kulterer, O. C. et al. A microdosing study with 99mTc-PHC-102 for the SPECT/CT imaging of primary and metastatic lesions in renal cell carcinoma patients. J. Nucl. Med. 62, 360–365 (2021).
Zhu, W. et al. Preclinical and pilot clinical evaluation of a small-molecule carbonic anhydrase IX targeting PET tracer in clear cell renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 50, 3116–3125 (2023).
Zhu, W. et al. Diagnostic efficacy of [68Ga]Ga-NY104 PET/CT to identify clear cell renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-024-06801-y (2024).
Verhoeff, S. R. et al. [89Zr]Zr-DFO-girentuximab and [18F]FDG PET/CT to predict watchful waiting duration in patients with metastatic clear-cell renal cell carcinoma. Clin. Cancer Res. 29, 592–601 (2023).
Leibovich, B. C. et al. Carbonic anhydrase IX is not an independent predictor of outcome for patients with clear cell renal cell carcinoma. J. Clin. Oncol. 25, 4757–4764 (2007).
Muselaers, C. H. et al. Tyrosine kinase inhibitor sorafenib decreases 111In-girentuximab uptake in patients with clear cell renal cell carcinoma. J. Nucl. Med. 55, 242–247 (2014).
Zhang, Z. et al. Design, synthesis and evaluation of 18F-labeled cationic carbonic anhydrase IX inhibitors for PET imaging. J. Enzym. Inhib. Med. Chem. 32, 722–730 (2017).
Burkett, B. J. et al. A review of theranostics: perspectives on emerging approaches and clinical advancements. Radiol. Imaging Cancer 5, e220157 (2023).
Divgi, C. R. et al. Phase I clinical trial with fractionated radioimmunotherapy using 131I-labeled chimeric G250 in metastatic renal cancer. J. Nucl. Med. 45, 1412–1421 (2004).
Brouwers, A. H. et al. Lack of efficacy of two consecutive treatments of radioimmunotherapy with 131I-cG250 in patients with metastasized clear cell renal cell carcinoma. J. Clin. Oncol. 23, 6540–6548 (2005).
Stillebroer, A. B. et al. Phase 1 radioimmunotherapy study with lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur. Urol. 64, 478–485 (2013).
Muselaers, C. H. et al. Phase 2 study of lutetium 177-labeled anti-carbonic anhydrase ix monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur. Urol. 69, 767–770 (2016).
Massiere, F. et al. Preclinical characterization of DPI-4452: A 68Ga/177Lu theranostic ligand for carbonic anhydrase IX. J. Nucl. Med. 65, 761–767 (2024).
Hofman, M. S. et al. First-in-human safety, imaging, and dosimetry of a carbonic anhydrase IX-targeting peptide, [68Ga]Ga-DPI-4452, in patients with clear cell renal cell carcinoma. J. Nucl. Med. 65, 740–743 (2024).
Feldman, D. R. et al. First-in-human clinical trial design of a first-in-class theranostic approach with a peptide-based radioligand targeting CA IX-expressing tumors. J. Clin. Oncol. 41, TPS3160–TPS3160 (2023).
Zhang, Z. et al. NIR-II light in clinical oncology: opportunities and challenges. Nat. Rev. Clin. Oncol. 21, 449–467 (2024).
Muselaers, C. H. et al. Optical imaging of renal cell carcinoma with anti-carbonic anhydrase IX monoclonal antibody girentuximab. J. Nucl. Med. 55, 1035–1040 (2014).
Muselaers, C. H. et al. Radionuclide and fluorescence imaging of clear cell renal cell carcinoma using dual labeled anti-carbonic anhydrase IX antibody G250. J. Urol. 194, 532–538 (2015).
Hekman, M. C. et al. Targeted dual-modality imaging in renal cell carcinoma: an ex vivo kidney perfusion study. Clin. Cancer Res. 22, 4634–4642 (2016).
Hekman, M. C. et al. Tumor-targeted dual-modality imaging to improve intraoperative visualization of clear cell renal cell carcinoma: a first in man study. Theranostics 8, 2161–2170 (2018).
Cazzamalli, S., Corso, A. D. & Neri, D. Linker stability influences the anti-tumor activity of acetazolamide-drug conjugates for the therapy of renal cell carcinoma. J. Control. Rel. 246, 39–45 (2017).
Boykoff, N. & Grimm, J. Current clinical applications of Cerenkov luminescence for intraoperative molecular imaging. Eur. J. Nucl. Med. Mol. Imaging 51, 2931–2940 (2024).
Zhang, Z., He, K., Chi, C., Hu, Z. & Tian, J. Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China. Eur. J. Nucl. Med. Mol. Imaging 49, 2531–2543 (2022).
Kazokaite-Adomaitiene, J., Becker, H. M., Smirnoviene, J., Dubois, L. J. & Matulis, D. Experimental approaches to identify selective picomolar inhibitors for carbonic anhydrase IX. Curr. Med. Chem. 28, 3361–3384 (2021).
Supuran, C. T. A simple yet multifaceted 90 years old, evergreen enzyme: carbonic anhydrase, its inhibition and activation. Bioorg. Med. Chem. Lett. 93, 129411 (2023).
Rowe, S. P., Gorin, M. A. & Pomper, M. G. Imaging of prostate-specific membrane antigen with small-molecule PET radiotracers: from the bench to advanced clinical applications. Annu. Rev. Med. 70, 461–477 (2019).
Ahn, T. et al. A review of prostate-specific membrane antigen (PSMA) positron emission tomography (PET) in renal cell carcinoma (RCC). Mol. Imaging Biol. 21, 799–807 (2019).
An, S., Huang, G., Liu, J. & Wei, W. PSMA-targeted theranostics of solid tumors: applications beyond prostate cancers. Eur. J. Nucl. Med. Mol. Imaging 49, 3973–3976 (2022).
Corpetti, M., Muller, C., Beltran, H., de Bono, J. & Theurillat, J. P. Prostate-specific membrane antigen-targeted therapies for prostate cancer: towards improving therapeutic outcomes. Eur. Urol. 85, 193–204 (2024).
Bukavina, L. et al. Incorporating prostate-specific membrane antigen positron emission tomography in management decisions for men with newly diagnosed or biochemically recurrent prostate cancer. Eur. Urol. 83, 521–533 (2023).
Spatz, S. et al. Comprehensive evaluation of prostate specific membrane antigen expression in the vasculature of renal tumors: implications for imaging studies and prognostic role. J. Urol. 199, 370–377 (2018).
Zschabitz, S. et al. Expression of prostate-specific membrane antigen (PSMA) in papillary renal cell carcinoma — overview and report on a large multicenter cohort. J. Cancer 13, 1706–1712 (2022).
Raveenthiran, S., Esler, R., Yaxley, J. & Kyle, S. The use of 68Ga-PET/CT PSMA in the staging of primary and suspected recurrent renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 46, 2280–2288 (2019).
Golan, S. et al. Dynamic 68Ga-PSMA-11 PET/CT for the primary evaluation of localized renal mass: a prospective study. J. Nucl. Med. 62, 773–778 (2021).
Filizoglu, N., Cetin, I. A., Kissa, T. N., Niftaliyeva, K. & Ones, T. 68Ga-PSMA PET/CT to distinguish brain metastasis of renal cell carcinoma from radiation necrosis after stereotactic radiosurgery. Clin. Nucl. Med. 46, 913–914 (2021).
Has Simsek, D., Civan, C., Erdem, S. & Sanli, Y. Complementary role of 68Ga-prostate-specific membrane antigen and 18F-FDG PET/CT for evaluation of metastases and treatment response in renal cell carcinoma. Clin. Nucl. Med. 46, 579–581 (2021).
Rhee, H. et al. Pilot study: use of gallium-68 PSMA PET for detection of metastatic lesions in patients with renal tumour. EJNMMI Res. 6, 76 (2016).
Rowe, S. P. et al. Imaging of metastatic clear cell renal cell carcinoma with PSMA-targeted 18F-DCFPyL PET/CT. Ann. Nucl. Med. 29, 877–882 (2015).
Yin, Y. et al. Inconsistent detection of sites of metastatic non-clear cell renal cell carcinoma with PSMA-targeted [18F]DCFPyL PET/CT. Mol. Imaging Biol. 21, 567–573 (2019).
Giesel, F. L. et al. Intraindividual comparison of 18F-PSMA-1007 and 18F-DCFPyL PET/CT in the prospective evaluation of patients with newly diagnosed prostate carcinoma: a pilot study. J. Nucl. Med. 59, 1076–1080 (2018).
Rowe, S. P. et al. Detection of 18F-FDG PET/CT occult lesions with 18F-DCFPyL PET/CT in a patient with metastatic renal cell carcinoma. Clin. Nucl. Med. 41, 83–85 (2016).
Marafi, F., Sasikumar, A., Aldaas, M. & Esmail, A. 18F-PSMA-1007 PET/CT for initial staging of renal cell carcinoma in an end-stage renal disease patient. Clin. Nucl. Med. 46, e65–e67 (2021).
Marafi, F., Sasikumar, A., Al-Terki, A. & Alfeeli, M. 18F-PSMA 1007 in suspected renal cell carcinoma. Clin. Nucl. Med. 45, 377–378 (2020).
Gao, J. et al. Comprehensive evaluation of 68Ga-PSMA-11 PET/CT parameters for discriminating pathological characteristics in primary clear-cell renal cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 48, 561–569 (2021).
Mittlmeier, L. M. et al. 18F-PSMA-1007 PET/CT for response assessment in patients with metastatic renal cell carcinoma undergoing tyrosine kinase or checkpoint inhibitor therapy: preliminary results. Eur. J. Nucl. Med. Mol. Imaging 48, 2031–2037 (2021).
Zhang, J., Schuchardt, C., Chen, X. & Baum, R. P. Rapid tumor washout of 177Lu-PSMA radioligand in renal cell carcinoma. Clin. Nucl. Med. 48, 732–734 (2023).
Flieswasser, T. et al. The CD70-CD27 axis in oncology: the new kids on the block. J. Exp. Clin. Cancer Res. 41, 12 (2022).
O’Neill, R. E. et al. T cell-derived CD70 delivers an immune checkpoint function in inflammatory T cell responses. J. Immunol. 199, 3700–3710 (2017).
Ruf, M. et al. pVHL/HIF-regulated CD70 expression is associated with infiltration of CD27+ lymphocytes and increased serum levels of soluble CD27 in clear cell renal cell carcinoma. Clin. Cancer Res. 21, 889–898 (2015).
Wang, Q. J., Hanada, K., Robbins, P. F., Li, Y. F. & Yang, J. C. Distinctive features of the differentiated phenotype and infiltration of tumor-reactive lymphocytes in clear cell renal cell carcinoma. Cancer Res. 72, 6119–6129 (2012).
Huang, R. R. et al. CD70 is consistently expressed in primary and metastatic clear cell renal cell carcinoma. Clin. Genitourin. Cancer 22, 347–353 (2024).
Zhou, X. et al. CD70-targeted immuno-PET/CT imaging of clear cell renal cell carcinoma: a translational study. J. Nucl. Med. https://doi.org/10.2967/jnumed.124.268509 (2024).
Krasniqi, A. et al. Same-day imaging using small proteins: clinical experience and translational prospects in oncology. J. Nucl. Med. 59, 885–891 (2018).
Tang, H., Gao, Y. & Han, J. Application progress of the single ___domain antibody in medicine. Int. J. Mol. Sci. 24, 4176 (2023).
Cleeren, F. et al. Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al18F-RESCA method. Nat. Protoc. 13, 2330–2347 (2018).
Qin, X. et al. High in-vivo stability in preclinical and first-in-human experiments with [18F]AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers. Eur. J. Nucl. Med. Mol. Imaging 50, 302–313 (2023).
Wang, C. et al. ImmunoPET imaging of multiple myeloma with [68Ga]Ga-NOTA-Nb1053. Eur. J. Nucl. Med. Mol. Imaging 48, 2749–2760 (2021).
Zhang, Y. et al. Development and characterization of nanobody-derived CD47 theranostic pairs in solid tumors. Research 6, 0077 (2023).
Gondry, O. et al. Phase II trial assessing the repeatability and tumor uptake of [68Ga]Ga-HER2 single-___domain antibody PET/CT in patients with breast carcinoma. J. Nucl. Med. 65, 178–184 (2024).
Zhang, Y. et al. Preclinical development of novel PD-L1 tracers and first-in-human study of [68Ga]Ga-NOTA-RW102 in patients with lung cancers. J. Immunother. Cancer 12, e008794 (2024).
Huang, W. et al. ImmunoPET imaging of Trop2 in patients with solid tumours. EMBO Mol. Med. 16, 1143–1161 (2024).
Keyaerts, M. et al. Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J. Nucl. Med. 57, 27–33 (2016).
Wu, Q. et al. ImmunoPET/CT imaging of clear cell renal cell carcinoma with [18F]RCCB6: a first-in-human study. Eur. J. Nucl. Med. Mol. Imaging 51, 2444–2457 (2024).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06148220 (2024).
Wu, Q. et al. [18F]RCCB6 immuno-positron emission tomography/computed tomography for postoperative surveillance in clear cell renal cell carcinoma: a pilot clinical study. Eur. Urol. 86, 372–374 (2024).
Pal, S. K. et al. CD70-targeted allogeneic CAR T-cell therapy for advanced clear cell renal cell carcinoma. Cancer Discov. 14, 1176–1189 (2024).
Choueiri, T. K. & Kaelin, W. G. Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat. Med. 26, 1519–1530 (2020).
Schodel, J. et al. Hypoxia, hypoxia-inducible transcription factors, and renal cancer. Eur. Urol. 69, 646–657 (2016).
Fitzgerald, K. N., Motzer, R. J. & Lee, C. H. Adjuvant therapy options in renal cell carcinoma — targeting the metastatic cascade. Nat. Rev. Urol. 20, 179–193 (2023).
Kawai, Y., Sakano, S., Korenaga, Y., Eguchi, S. & Naito, K. Associations of single nucleotide polymorphisms in the vascular endothelial growth factor gene with the characteristics and prognosis of renal cell carcinomas. Eur. Urol. 52, 1147–1155 (2007).
Sepe, P. et al. Prospective translational study investigating molecular predictors of resistance to first-line pazopanib in metastatic reNal CEll carcinoma (PIPELINE Study). Am. J. Clin. Oncol. 43, 621–627 (2020).
Barata, P. C. & Rini, B. I. Treatment of renal cell carcinoma: current status and future directions. CA Cancer J. Clin. 67, 507–524 (2017).
Oosting, S. F. et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J. Nucl. Med. 56, 63–69 (2015).
Oosting, S. F. et al. 89Zr-bevacizumab PET visualizes disease manifestations in patients with von Hippel-Lindau disease. J. Nucl. Med. 57, 1244–1250 (2016).
van Es, S. C. et al. 89Zr-bevacizumab PET: potential early indicator of everolimus efficacy in patients with metastatic renal cell carcinoma. J. Nucl. Med. 58, 905–910 (2017).
Nagengast, W. B. et al. VEGF-PET imaging is a noninvasive biomarker showing differential changes in the tumor during sunitinib treatment. Cancer Res. 71, 143–153 (2011).
Luo, H. et al. PET imaging of VEGFR-2 expression in lung cancer with 64Cu-labeled ramucirumab. J. Nucl. Med. 57, 285–290 (2016).
Meyer, J. P. et al. Selective imaging of VEGFR-1 and VEGFR-2 using 89Zr-labeled single-chain VEGF mutants. J. Nucl. Med. 57, 1811–1816 (2016).
Vera-Badillo, F. E. et al. Systemic therapy for non-clear cell renal cell carcinomas: a systematic review and meta-analysis. Eur. Urol. 67, 740–749 (2015).
Zhao, L. et al. Fibroblast activation protein-based theranostics in cancer research: a state-of-the-art review. Theranostics 12, 1557–1569 (2022).
Solano-Iturri, J. D. et al. Altered tissue and plasma levels of fibroblast activation protein-ɑ (FAP) in renal tumours. Cancers 12, 3393 (2020).
Huang, W. et al. Development and characterization of novel FAP-targeted theranostic pairs: a bench-to-bedside study. Research 6, 0282 (2023).
Banihashemian, S. S. et al. [68Ga]Ga-FAP-2286, a novel promising theragnostic approach for PET/CT imaging in patients with various type of metastatic cancers. Eur. J. Nucl. Med. Mol. Imaging 51, 1981–1988 (2024).
Prive, B. M. et al. Fibroblast activation protein-targeted radionuclide therapy: background, opportunities, and challenges of first (pre)clinical studies. Eur. J. Nucl. Med. Mol. Imaging 50, 1906–1918 (2023).
Civan, C. et al. The role of [68Ga]Ga-FAPI-04 PET/CT in renal cell carcinoma: a preliminary study. Eur. J. Nucl. Med. Mol. Imaging 51, 852–861 (2024).
Xie, F., Fu, L. & Zhou, W. Superiority of 68Ga-FAPI-04 in delineation of soft tissue and liver metastases in chromophobe renal cell carcinoma for restaging. Clin. Nucl. Med. 47, e758–e759 (2022).
Civan, C., Isik, E. G., Karadogan, S., Sanli, Y. & Kuyumcu, S. 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT in metastatic papillary renal cell cancer. Clin. Nucl. Med. 48, e223–e224 (2023).
Motzer, R. J. et al. Kidney cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 20, 71–90 (2022).
Braun, D. A. et al. Beyond conventional immune-checkpoint inhibition — novel immunotherapies for renal cell carcinoma. Nat. Rev. Clin. Oncol. 18, 199–214 (2021).
Vasudev, N. S. et al. Standard versus modified ipilimumab, in combination with nivolumab, in advanced renal cell carcinoma: a randomized phase II trial (PRISM). J. Clin. Oncol. 42, 312–323 (2024).
Go, C., Okumura, H. & Miura, Y. Cabozantinib plus nivolumab and ipilimumab in renal-cell carcinoma. N. Engl. J. Med. 389, 477 (2023).
Motzer, R. J. et al. Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial. Lancet Oncol. 23, 888–898 (2022).
Litiere, S., Collette, S., de Vries, E. G., Seymour, L. & Bogaerts, J. RECIST — learning from the past to build the future. Nat. Rev. Clin. Oncol. 14, 187–192 (2017).
Chiou, V. L. & Burotto, M. Pseudoprogression and immune-related response in solid tumors. J. Clin. Oncol. 33, 3541–3543 (2015).
Seymour, L. et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).
Sachpekidis, C. et al. Predictive value of early 18F-FDG PET/CT studies for treatment response evaluation to ipilimumab in metastatic melanoma: preliminary results of an ongoing study. Eur. J. Nucl. Med. Mol. Imaging 42, 386–396 (2015).
Rossi, S. et al. Clinical characteristics of patient selection and imaging predictors of outcome in solid tumors treated with checkpoint-inhibitors. Eur. J. Nucl. Med. Mol. Imaging 44, 2310–2325 (2017).
Aide, N. et al. FDG PET/CT for assessing tumour response to immunotherapy: report on the EANM symposium on immune modulation and recent review of the literature. Eur. J. Nucl. Med. Mol. Imaging 46, 238–250 (2019).
Shankar, L. K. et al. Harnessing imaging tools to guide immunotherapy trials: summary from the National Cancer Institute Cancer Imaging Steering Committee workshop. Lancet Oncol. 24, e133–e143 (2023).
Wei, W., Jiang, D., Ehlerding, E. B., Luo, Q. & Cai, W. Noninvasive PET imaging of T cells. Trends Cancer 4, 359–373 (2018).
Farwell, M. D. et al. CD8-targeted PET imaging of tumor-infiltrating T cells in patients with cancer: a phase I first-in-humans study of 89Zr-Df-IAB22M2C, a radiolabeled anti-CD8 minibody. J. Nucl. Med. 63, 720–726 (2022).
Wei, W. et al. ImmunoPET imaging of TIM-3 in murine melanoma models. Adv. Ther. 3, 2000018 (2020).
Niemeijer, A. N. et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat. Commun. 9, 4664 (2018).
Vento, J. et al. PD-L1 detection using 89Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. J. Immunother. Cancer 7, 144 (2019).
Bensch, F. et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 24, 1852–1858 (2018).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04006522 (2024).
Zhao, H. et al. ImmunoPET imaging of human CD8+ T cells with novel 68Ga-labeled nanobody companion diagnostic agents. J. Nanobiotechnol. 19, 42 (2021).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03802123 (2024).
Lamers, C. H. et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol. Ther. 21, 904–912 (2013).
Lamers, C. H., Klaver, Y., Gratama, J. W., Sleijfer, S. & Debets, R. Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells — a completed study overview. Biochem. Soc. Trans. 44, 951–959 (2016).
Wang, Y. et al. Affinity fine-tuning anti-CAIX CAR-T cells mitigate on-target off-tumor side effects. Mol. Cancer 23, 56 (2024).
Pal, S. K. et al. A phase 1 trial of SGN-CD70A in patients with CD70-positive, metastatic renal cell carcinoma. Cancer 125, 1124–1132 (2019).
Yang, M. et al. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors. Theranostics 10, 7622–7634 (2020).
Tannir, N. M. et al. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma. Invest. New Drugs 32, 1246–1257 (2014).
Owonikoko, T. K. et al. First-in-human multicenter phase I study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70. Cancer Chemother. Pharmacol. 77, 155–162 (2016).
Massard, C. et al. First-in-human study to assess safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-CD27L antibody-drug conjugate AMG 172 in patients with relapsed/refractory renal cell carcinoma. Cancer Chemother. Pharmacol. 83, 1057–1063 (2019).
Aftimos, P. et al. Phase I dose-escalation study of the anti-CD70 antibody ARGX-110 in advanced malignancies. Clin. Cancer Res. 23, 6411–6420 (2017).
Riether, C. et al. Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents. Nat. Med. 26, 1459–1467 (2020).
Gelardi, F. et al. Biological characterization of renal masses using immuno-PET. Eur. J. Nucl. Med. Mol. Imaging 51, 2442–2443 (2024).
Wu, Q., Yang, S., Liu, J., Jiang, D. & Wei, W. Antibody theranostics in precision medicine. Med 4, 69–74 (2023).
Oosterwijk-Wakka, J. C. et al. Combination of sunitinib and 177Lu-labeled antibody cG250 targeted radioimmunotherapy: a promising new therapeutic strategy for patients with advanced renal cell cancer. Neoplasia 32, 100826 (2022).
Merkx, R. I. J. et al. Carbonic anhydrase IX-targeted α-radionuclide therapy with 225Ac inhibits tumor growth in a renal cell carcinoma model. Pharmaceuticals 15, 570 (2022).
Nakaigawa, N. et al. Evaluation of PET/CT imaging with [89Zr]Zr-DFO-girentuximab: a phase 1 clinical study in Japanese patients with renal cell carcinoma (Zirdac-JP). Jpn. J. Clin. Oncol. 54, 873–879 (2024).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06090331 (2024).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02497599 (2021).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00520533 (2022).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00003102 (2023).
Chamie, K. et al. Adjuvant weekly girentuximab following nephrectomy for high-risk renal cell carcinoma: the ARISER randomized clinical trial. JAMA Oncol. 3, 913–920 (2017).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT00199875 (2022).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05239533 (2024).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05868174 (2024).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05879510 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05706129 (2024).
Hofman, M. S. et al. First-in-human safety, imaging and dosimetry of [68Ga]Ga-DPI-4452, a novel CA IX-targeting peptide, in patients with clear cell renal cell carcinoma. J. Clin. Oncol. 42, 373–373 (2024).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04969354 (2021).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05698238 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02215850 (2016).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05468190 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05420519 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06182735 (2023).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04987086 (2024).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06428708 (2022).
Meyer, A. R. et al. Improved identification of patients with oligometastatic clear cell renal cell carcinoma with PSMA-targeted (18)F-DCFPyL PET/CT. Ann. Nucl. Med. 33, 617–623 (2019).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05170555 (2021).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06059014 (2023).
Acknowledgements
The work was partly supported by the National Key Research and Development Program of China (grant no. 2020YFA0909000) and the National Natural Science Foundation of China (grant nos 82372014 and 82402322).
Author information
Authors and Affiliations
Contributions
W.W., Q.W., J.C. and J.L. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. W.W., Q.W., J.C. and J.L. reviewed and/or edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
W.W. is a consultant of Alpha Nuclide (Ningbo) Medical Technology Co., Ltd. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Urology thanks Shankar Siva and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wu, Q., Shao, H., Zhai, W. et al. Molecular imaging of renal cell carcinomas: ready for prime time. Nat Rev Urol 22, 336–353 (2025). https://doi.org/10.1038/s41585-024-00962-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41585-024-00962-z
This article is cited by
-
The pathogenesis and therapeutic implications of metabolic reprogramming in renal cell carcinoma
Cell Death Discovery (2025)