Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology, diagnosis and treatment of anterior prostate cancer

Abstract

Anterior prostate cancers (APCs) are a group of impalpable neoplasms located in regions anterior to the urethra, which comprise the transition zone, apical peripheral zone and anterior fibromuscular stroma. These regions are typically undersampled using conventional biopsy schemes, leading to a low detection rate for APC and a high rate of false negatives. Radical prostatectomy series suggest prevalence rates of at least 10–30%, but transperineal systematic biopsy is ideal for diagnosis, particularly where multiparametric MRI is unavailable. Combined MRI-targeted and systematic biopsies demonstrate high concordance with final histopathology and lead to the fewest incidences of upgrading and upstaging at radical prostatectomy. Thus, the use of combined biopsy techniques has important implications for preoperative work-up and surgical planning, as APCs are associated with larger cancer volumes and a higher rate of positive surgical margins than posterior prostate cancer. Nevertheless, anterior tumour ___location might confer a relative resistance to stage progression, as APCs exhibit lower rates of extraprostatic extension, seminal vesical invasion and lymph node metastases than the more commonly seen posterior neoplasms. Few studies have examined the long-term outcomes of partial gland approaches to APCs, but MRI-targeted techniques have the potential to provide real-time intraoperative guidance and maximize the oncological safety of anterior focal treatment options in patients with APC.

Key points

  • Anterior prostate cancer (APC) accounts for 10–30% of all prostate cancers at radical prostatectomy.

  • APCs are a heterogenous group from a histological perspective, comprising tumours found in the transition zone, the anterior peripheral zone and the anterior fibromuscular stroma.

  • APCs are generally larger than posterior prostate cancers and are associated with higher rates of positive surgical margins, but are rarely associated with extraprostatic extension or lymph node metastasis.

  • Transrectal ultrasonography-guided biopsy has poor sensitivity for APCs; anterior lesions are better sampled through the transperineal approach.

  • Multi-parametric MRI ± prostate-specific membrane antigen-PET are essential for preoperative staging and surgical planning.

  • The choice of the most appropriate focal therapy for localized prostate cancer can be influenced by tumour ___location.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Template diagram of the prostate, illustrating the anatomy and surgical approach for anterior prostate cancer.

Similar content being viewed by others

References

  1. Cancer Research UK. Prostate cancer statistics. Cancer Research UKhttps://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/prostate-cancer (2024).

  2. McNeal, J. E. Normal histology of the prostate. Am. J. Surg. Pathol. 12, 619–633 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. McNeal, J. E. The zonal anatomy of the prostate. Prostate 2, 35–49 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Harvey, C. J., Pilcher, J., Richenberg, J., Patel, U. & Frauscher, F. Applications of transrectal ultrasound in prostate cancer. Br. J. Radiol. 85, S3–S17 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Abdelsayed, G. A., Danial, T., Kaswick, J. A. & Finley, D. S. Tumors of the anterior prostate: implications for diagnosis and treatment. Urology 85, 1224–1228 (2015).

    Article  PubMed  Google Scholar 

  6. Falzarano, S. M. et al. Clinicopathologic features and outcomes of anterior-dominant prostate cancer: implications for diagnosis and treatment. Prostate Cancer Prostatic Dis. 23, 435–440 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. McNeal, J. E., Redwine, E. A., Freiha, F. S. & Stamey, T. A. Zonal distribution of prostatic adenocarcinoma: correlation with histologic pattern and direction of spread. Am. J. Surg. Pathol. 12, 897–906 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Samaratunga, H. et al. Clinicopathologic significance of anterior prostate cancer: comparison with posterior prostate cancer in the era of multiparametric magnetic resonance imaging. Am. J. Surg. Pathol. 47, 701–708 (2023).

    Article  PubMed  Google Scholar 

  9. Bott, S. R. J., Young, M. P. A., Kellett, M. J. & Parkinson, M. C. Anterior prostate cancer: is it more difficult to diagnose? BJU Int. 89, 886–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Kim, M. et al. Characteristics of anteriorly located prostate cancer and the usefulness of multiparametric magnetic resonance imaging for diagnosis. J. Urol. 196, 367–373 (2016).

    Article  PubMed  Google Scholar 

  11. Villers, A. et al. Partial prostatectomy for anterior cancer: short-term oncologic and functional outcomes. Eur. Urol. 72, 333–342 (2017).

    Article  PubMed  Google Scholar 

  12. Werahera, P. N. et al. Anterior tumors of the prostate: diagnosis and significance. Can. J. Urol. 20, 6897–6906 (2013).

    PubMed  PubMed Central  Google Scholar 

  13. Al Edwan, G. et al. Magnetic resonance imaging detected prostate evasive anterior tumours: further insights. Can. Urol. Assoc. J. 9, E267–E272 (2015).

    Article  Google Scholar 

  14. Saghir, R. et al. Clinical outcomes of anterior prostate cancers treated with robotic assisted radical prostatectomy. BJUI Compass 4, 352–360 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patel, H. D. et al. Comparison of magnetic resonance imaging-based risk calculators to predict prostate cancer risk. JAMA Netw. Open 7, e241516 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marcq, G. et al. Prevalence and pathological characteristics of anterior prostate cancer in a cohort of radical prostatectomy patients diagnosed by biopsies and MRI. J. Urol. 199, e706 (2018).

    Article  Google Scholar 

  17. Mygatt, J. et al. Anterior tumors of the prostate: clinicopathological features and outcomes. Prostate Cancer Prostatic Dis. 17, 75–80 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Koppie, T. M. et al. The clinical features of anterior prostate cancers. BJU Int. 98, 1167–1171 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Catalona, W. J. et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N. Engl. J. Med. 324, 1156–1161 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Jones, D., Friend, C., Dreher, A., Allgar, V. & Macleod, U. The diagnostic test accuracy of rectal examination for prostate cancer diagnosis in symptomatic patients: a systematic review. BMC Fam. Pract. 19, 1–6 (2018).

    Article  Google Scholar 

  21. Liss, M. A. et al. An update of the American Urological Association white paper on the prevention and treatment of the more common complications related to prostate biopsy. J. Urol. 198, 329–334 (2017).

    Article  PubMed  Google Scholar 

  22. Bjurlin, M. A. et al. Optimization of initial prostate biopsy in clinical practice: sampling, labeling and specimen processing. J. Urol. 189, 2039–2046 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ploussard, G. et al. The contemporary concept of significant versus insignificant prostate cancer. Eur. Urol. 60, 291–303 (2011).

    Article  PubMed  Google Scholar 

  24. Loeb, S. et al. Overdiagnosis and overtreatment of prostate cancer. Eur. Urol. 65, 1046–1055 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ippoliti, S. et al. Optimal biopsy approach for detection of clinically significant prostate cancer. Br. J. Radiol. 95, 20210413 (2022).

    Article  PubMed  Google Scholar 

  26. Stabile, A. et al. Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat. Rev. Urol. 17, 41–61 (2019).

    Article  PubMed  Google Scholar 

  27. Hamoen, E. H., de Rooij, M., Witjes, J. A., Barentsz, J. O. & Rovers, M. M. Use of the Prostate Imaging Reporting and Data System (PI-RADS) for prostate cancer detection with multiparametric magnetic resonance imaging: a diagnostic meta-analysis. Eur. Urol. 67, 1112–1121 (2015).

    Article  PubMed  Google Scholar 

  28. Moldovan, P. C. et al. What is the negative predictive value of multiparametric magnetic resonance imaging in excluding prostate cancer at biopsy? A systematic review and meta-analysis from the European Association of Urology Prostate Cancer Guidelines Panel. Eur. Urol. 72, 250–266 (2017).

    Article  PubMed  Google Scholar 

  29. Zhen, L. et al. Accuracy of multiparametric magnetic resonance imaging for diagnosing prostate cancer: a systematic review and meta-analysis. BMC Cancer 19, 1–15 (2019).

    Article  Google Scholar 

  30. Sathianathen, N. J. et al. Negative predictive value of multiparametric magnetic resonance imaging in the detection of clinically significant prostate cancer in the prostate imaging reporting and data system era: a systematic review and meta-analysis. Eur. Urol. 78, 402–414 (2020).

    Article  PubMed  Google Scholar 

  31. Komai, Y. et al. High diagnostic ability of multiparametric magnetic resonance imaging to detect anterior prostate cancer missed by transrectal 12-core biopsy. J. Urol. 190, 867–873 (2013).

    Article  PubMed  Google Scholar 

  32. Volkin, D. et al. Multiparametric magnetic resonance imaging (MRI) and subsequent MRI/ultrasonography fusion‐guided biopsy increase the detection of anteriorly located prostate cancers. BJU Int. 114, E43–E49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shinmoto, H. et al. Anterior prostate cancer: diagnostic performance of T2-weighted MRI and an apparent diffusion coefficient map. Am. J. Roentgenol. 205, W185–W192 (2015).

    Article  Google Scholar 

  34. Zaytoun, O. M. et al. Emergence of fluoroquinolone-resistant Escherichia coli as cause of postprostate biopsy infection: implications for prophylaxis and treatment. Urology 77, 1035–1041 (2011).

    Article  PubMed  Google Scholar 

  35. Nam, R. K. et al. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J. Urol. 183, 963–969 (2010).

    Article  PubMed  Google Scholar 

  36. Chang, D. T. S., Challacombe, B. & Lawrentschuk, N. Transperineal biopsy of the prostate — is this the future? Nat. Rev. Urol. 10, 690–702 (2013).

    Article  PubMed  Google Scholar 

  37. Connor, M. J. et al. Landmarks in the evolution of prostate biopsy. Nat. Rev. Urol. 20, 241–258 (2023).

    Article  PubMed  Google Scholar 

  38. Schouten, M. G. et al. Why and where do we miss significant prostate cancer with multi-parametric magnetic resonance imaging followed by magnetic resonance-guided and transrectal ultrasound-guided biopsy in biopsy-naïve men? Eur. Urol. 71, 896–903 (2017).

    Article  PubMed  Google Scholar 

  39. Castellani, D. et al. Infection rate after transperineal prostate biopsy with and without prophylactic antibiotics: results from a systematic review and meta-analysis of comparative studies. J. Urol. 207, 25–34 (2022).

    Article  PubMed  Google Scholar 

  40. Ortner, G., Tzanaki, E., Rai, B. P., Nagele, U. & Tokas, T. Transperineal prostate biopsy: the modern gold standard to prostate cancer diagnosis. Turkish J. Urol. 47, S19–S26 (2021).

    Article  Google Scholar 

  41. Hossack, T. et al. Location and pathological characteristics of cancers in radical prostatectomy specimens identified by transperineal biopsy compared to transrectal biopsy. J. Urol. 188, 781–785 (2012).

    Article  PubMed  Google Scholar 

  42. Pal, R. P., Elmussareh, M., Chanawani, M. & Khan, M. A. The role of a standardized 36 core template‐assisted transperineal prostate biopsy technique in patients with previously negative transrectal ultrasonography‐guided prostate biopsies. BJU Int. 109, 367–371 (2012).

    Article  PubMed  Google Scholar 

  43. Merrick, G. S. et al. Prostate cancer distribution in patients diagnosed by transperineal template-guided saturation biopsy. Eur. Urol. 52, 715–724 (2007).

    Article  PubMed  Google Scholar 

  44. Mabjeesh, N. J., Lidawi, G., Chen, J., German, L. & Matzkin, H. High detection rate of significant prostate tumours in anterior zones using transperineal ultrasound‐guided template saturation biopsy. BJU Int. 110, 993–997 (2012).

    Article  PubMed  Google Scholar 

  45. Gershman, B., Zietman, A. L., Feldman, A. S. & McDougal, W. S. Transperineal template-guided prostate biopsy for patients with persistently elevated PSA and multiple prior negative biopsies. Urol. Oncol. 31, 1093–1097 (2013).

    Article  PubMed  Google Scholar 

  46. Taira, A. V. et al. Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis. 13, 71–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Roberts, M. J. et al. Using PSMA imaging for prognostication in localized and advanced prostate cancer. Nat. Rev. Urol. 20, 23–47 (2023).

    Article  PubMed  Google Scholar 

  48. Perera, M. et al. Sensitivity, specificity, and predictors of positive 68 Ga–prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur. Urol. 70, 926–937 (2020).

    Article  Google Scholar 

  49. Hofman, M. S. et al. Prostate-specific membrane antigen PET: clinical utility in prostate cancer, management decisions, and their impact. J. Clin. Oncol. 38, 400–409 (2020).

    Google Scholar 

  50. Emmett, L. et al. The additive diagnostic value of prostate-specific membrane antigen positron emission tomography computed tomography to multiparametric magnetic resonance imaging triage in the diagnosis of prostate cancer (PRIMARY): a prospective multicentre study. Eur. Urol. 80, 682–689 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Augustin, H., Erbersdobler, A., Hammerer, P. G., Graefen, M. & Huland, H. Prostate cancers in the transition zone: part 2; clinical aspects. BJU Int. 94, 1226–1229 (2004).

    Article  PubMed  Google Scholar 

  52. Grignon, D. J. & Sakr, W. A. Zonal origin of prostatic adenocarcinoma: are there biologic differences between transition zone and peripheral zone adenocarcinomas of the prostate gland? J. Cel. Biochem. 19, 267–269 (1994).

    CAS  Google Scholar 

  53. Lee, J. J. et al. Biologic differences between peripheral and transition zone prostate cancer. Prostate 75, 183–190 (2015).

    Article  PubMed  Google Scholar 

  54. Shannon, B. A., McNeal, J. E. & Cohen, R. J. Transition zone carcinoma of the prostate gland: a common indolent tumour type that occasionally manifests aggressive behaviour. Pathol 35, 467–471 (2003).

    Google Scholar 

  55. Dev, H. S. et al. Surgical margin length and ___location affect recurrence rates after robotic prostatectomy. Urol. Oncol. 33, e7–e13 (2015).

    Article  Google Scholar 

  56. Hashimoto, K., Shinkai, N., Tanaka, T. & Masumori, N. Impact of extended prostate biopsy including apical anterior region for cancer detection and prediction of surgical margin status for radical prostatectomy. Jpn. J. Clin. Oncol. 47, 568–573 (2017).

    Article  PubMed  Google Scholar 

  57. Schieda, N. et al. MRI assessment of pathological stage and surgical margins in anterior prostate cancer (APC) using subjective and quantitative analysis. J. Magn. Reson. Imaging 45, 1296–1303 (2017).

    Article  PubMed  Google Scholar 

  58. Pepe, P. et al. Detection rate of 68Ga-PSMA PET/CT vs. mpMRI targeted biopsy for clinically significant prostate cancer. Anticancer. Res. 42, 3011–3015 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Oshima, M. et al. Retzius-sparing robotic prostatectomy is associated with higher positive surgical margin rate in anterior tumors, but not in posterior tumors, compared to conventional anterior robotic prostatectomy. Prostate Int. 11, 13–19 (2023).

    Article  PubMed  Google Scholar 

  60. Lee, J. et al. Retzius sparing robot-assisted radical prostatectomy conveys early regain of continence over conventional robot-assisted radical prostatectomy: a propensity score matched analysis of 1,863 patients. J. Urol. 203, 137–144 (2020).

    Article  PubMed  Google Scholar 

  61. Mottrie, A. et al. Objective assessment of intraoperative skills for robot‐assisted radical prostatectomy (RARP): results from the ERUS scientific and educational working groups metrics initiative. BJU Int. 128, 103–111 (2021).

    Article  PubMed  Google Scholar 

  62. Nicoletti, R. et al. Functional outcomes and safety of focal therapy for prostate cancer: a systematic review on results and patient-reported outcome measures (PROMs). Prostate Cancer Prostatic Dis. 27, 614–622 (2024).

    Article  PubMed  Google Scholar 

  63. Hopstaken, J. S. et al. An updated systematic review on focal therapy in localized prostate cancer: what has changed over the past 5 years? Eur. Urol. 81, 5–33 (2022).

    Article  PubMed  Google Scholar 

  64. Elhelf, I. S. et al. High intensity focused ultrasound: the fundamentals, clinical applications and research trends. Diagn. Interv. Imaging 99, 349–359 (2018).

    Article  PubMed  Google Scholar 

  65. Huber, P. M. et al. Focal HIFU therapy for anterior compared to posterior prostate cancer lesions. World J. Urol. 39, 1115–1119 (2021).

    Article  PubMed  Google Scholar 

  66. Schmid, F. A. et al. Prospective multicentre study using high intensity focused ultrasound (HIFU) for the focal treatment of prostate cancer: safety outcomes and complications. Urol. Oncol. 38, 225–230 (2019).

    Article  PubMed  Google Scholar 

  67. Ganzer, R. et al. Which technology to select for primary focal treatment of prostate cancer? — European Section of Urotechnology (ESUT) position statement. Prostate Cancer Prostatic Dis. 21, 175–186 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Tay, K. J. & Polascik, T. J. Focal cryotherapy for localized prostate cancer. Arch. Esp. Urol. 69, 317–326 (2016).

    CAS  PubMed  Google Scholar 

  69. Jung, J. H. et al. Primary cryotherapy for localised or locally advanced prostate cancer. Cochrane Database Syst. Rev. 5, CD005010 (2018).

    PubMed  Google Scholar 

  70. Sze, C. et al. Anterior gland focal cryoablation: proof-of-concept primary prostate cancer treatment in select men with localized anterior cancers detected by multi-parametric magnetic resonance imaging. BMC Urol. 19, 1–7 (2019).

    Article  Google Scholar 

  71. Shah, T. T. et al. Early-medium-term outcomes of primary focal cryotherapy to treat nonmetastatic clinically significant prostate cancer from a prospective multicentre registry. Eur. Urol. 76, 98–105 (2019).

    Article  PubMed  Google Scholar 

  72. Coleman, J. A. & Scardino, P. T. Targeted prostate cancer ablation: energy options. Curr. Opin. Urol. 23, 123–128 (2013).

    Article  PubMed  Google Scholar 

  73. Ghai, S. & Trachtenberg, J. In-bore MRI interventions: current status and future applications. Curr. Opin. Urol. 25, 205–211 (2015).

    Article  PubMed  Google Scholar 

  74. Wimper, Y., Fütterer, J. J. & Bomers, J. G. MR imaging in real time guiding of therapies in prostate cancer. Life 12, 302 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rubinsky, B., Onik, G. & Mikus, P. Irreversible electroporation: a new ablation modality — clinical implications. Technol. Cancer Res. Treat. 6, 37–48.

  76. Prabhakar, P. et al. Irreversible electroporation as a focal therapy for localized prostate cancer: a systematic review. Indian. J. Urol. 40, 6–16 (2024).

    Article  PubMed  Google Scholar 

  77. Scheltema, M. J. et al. Pair-matched patient-reported quality of life and early oncological control following focal irreversible electroporation versus robot-assisted radical prostatectomy. World J. Urol. 36, 1383–1389 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Villers, A. et al. Robot‐assisted partial prostatectomy for anterior prostate cancer: a step‐by‐step guide. BJU Int. 119, 968–974 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Villers, A. et al. Robot partial prostatectomy for anterior cancer: long-term functional and oncological outcomes at 7 years. Eur. Urol. Open Sci. 55, 11–14 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. European Association of Urology. Prostate Cancer. EAU Guidelines 2024. EAU https://uroweb.org/guidelines/prostate-cancer/chapter/treatment (2024).

  81. Mason, M. D. et al. Final report of the intergroup randomized study of combined androgen-deprivation therapy plus radiotherapy versus androgen-deprivation therapy alone in locally advanced prostate cancer. J. Clin. Oncol. 33, 2143–2150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zelefsky, M. J. et al. Multi-institutional analysis of long-term outcome for stages T1–T2 prostate cancer treated with permanent seed implantation. Int. J. Radiat. Oncol. Biol. Phys. 67, 327–333 (2007).

    Article  PubMed  Google Scholar 

  83. Haworth, A. & Williams, S. Focal therapy for prostate cancer: the technical challenges. J. Contemp. Brachytherapy 9, 383–389 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Meynard, C. et al. Tumor burden and ___location as prognostic factors in patients treated by iodine seed implant brachytherapy for localized prostate cancers. Radiat. Oncol. 15, 1 (2020).

    Article  CAS  Google Scholar 

  85. Dickinson, L. et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur. Urol. 59, 477–494 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ben Challacombe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Urology thanks Pietro Pepe, Peter Choyke and Mark Emberton for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharbieh, S., Mullin, J., Jaffer, A. et al. Epidemiology, diagnosis and treatment of anterior prostate cancer. Nat Rev Urol 22, 439–446 (2025). https://doi.org/10.1038/s41585-024-00992-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-024-00992-7

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer