Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A nebular origin for the persistent radio emission of fast radio bursts

Abstract

Fast radio bursts (FRBs) are millisecond-duration, bright (approximately Jy) extragalactic bursts, whose production mechanism is still unclear1. Recently, two repeating FRBs were found to have a physically associated persistent radio source of non-thermal origin2,3. These two FRBs have unusually large Faraday rotation measure values2,3, probably tracing a dense magneto-ionic medium, consistent with synchrotron radiation originating from a nebula surrounding the FRB source4,5,6,7,8. Recent theoretical arguments predict that, if the observed Faraday rotation measure mostly arises from the persistent radio source region, there should be a simple relation between the persistent radio source luminosity and the rotation measure itself7,9. Here we report the detection of a third, less luminous persistent radio source associated with the repeating FRB source FRB 20201124A at a distance of 413 Mpc, substantially expanding the predicted relation into the low luminosity–low Faraday rotation measure regime (<1,000 rad m−2). At lower values of the Faraday rotation measure, the expected radio luminosity falls below the limit-of-detection threshold for present-day radio telescopes. These findings support the idea that the persistent radio sources observed so far are generated by a nebula in the FRB environment and that FRBs with low Faraday rotation measure may not show a persistent radio source because of a weaker magneto-ionic medium. This is generally consistent with models invoking a young magnetar as the central engine of the FRB, in which the surrounding ionized nebula—or the interacting shock in a binary system—powers the persistent radio source.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Images of the host galaxy of FRB 20201124A.
Fig. 2: SFR map of the FRB 20201124A host galaxy, as derived from GTC/MEGARA integral field spectroscopy.
Fig. 3: The proposed relation between the PRS specific radio luminosity and the FRB RM.

Similar content being viewed by others

Data availability

All relevant data used for this work are publicly available at the repositories of each facility. In particular, raw and calibrated VLA data can be downloaded from the NRAO data archive (https://data.nrao.edu/), NOEMA raw data are available at the IRAM Science Data Archive (https://iram-institute.org/science-portal/data-archive/) and GTC raw data at the Gran Telescopio Canarias Public Archive (https://gtc.sdc.cab.inta-csic.es/gtc/).

References

  1. Zhang, B. The physics of fast radio bursts. Rev. Mod. Phys. 95, 035005 (2023).

    ADS  CAS  Google Scholar 

  2. Michilli, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

    ADS  CAS  PubMed  Google Scholar 

  3. Niu, C. H. et al. A repeating fast radio burst associated with a persistent radio source. Nature 606, 873–877 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Margalit, B. & Metzger, B. D. A concordance picture of FRB 121102 as a flaring magnetar embedded in a magnetized ion–electron wind nebula. Astrophys. J. Lett. 868, L4 (2018).

    ADS  CAS  Google Scholar 

  5. Metzger, B. D., Margalit, B. & Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 485, 4091–4106 (2019).

    ADS  CAS  Google Scholar 

  6. Yang, G. et al. X-CIGALE: fitting AGN/galaxy SEDs from X-ray to infrared. Mon. Not. R. Astron. Soc. 491, 740–757 (2020).

    ADS  CAS  Google Scholar 

  7. Yang, Y.-P., Lu, W., Feng, Y., Zhang, B. & Li, D. Temporal scattering, depolarization, and persistent radio emission from magnetized inhomogeneous environments near repeating fast radio burst sources. Astrophys. J. Lett. 928, L16 (2022).

    ADS  Google Scholar 

  8. Sridhar, N. & Metzger, B. D. Radio nebulae from hyperaccreting X-ray binaries as common-envelope precursors and persistent counterparts of fast radio bursts. Astrophys. J. 937, 5 (2022).

    ADS  Google Scholar 

  9. Yang, Y.-P., Li, Q.-C. & Zhang, B. Are persistent emission luminosity and rotation measure of fast radio bursts related? Astrophys. J. 895, 7 (2020).

    ADS  Google Scholar 

  10. Chime/FRB Collaboration. Recent high activity from a repeating fast radio burst discovered by CHIME/FRB. The Astronomer’s Telegram 14497, 1 (2021).

    ADS  Google Scholar 

  11. Lanman, A. E. et al. A sudden period of high activity from repeating fast radio burst 20201124a. Astrophys. J. 927, 59 (2022).

    ADS  Google Scholar 

  12. Nimmo, K. et al. Milliarcsecond localization of the repeating FRB 20201124A. Astrophys. J. Lett. 927, L3 (2022).

    ADS  Google Scholar 

  13. Piro, L. et al. The fast radio burst FRB 20201124A in a star-forming region: constraints to the progenitor and multiwavelength counterparts. Astron. Astrophys. 656, L15 (2021).

    ADS  CAS  Google Scholar 

  14. Dong, Y. et al. Mapping obscured star formation in the host galaxy of FRB 20201124A. Astrophys. J. 961, 44 (2024).

    ADS  Google Scholar 

  15. Marcote, B. et al. VLBI localization of FRB 20201124A and absence of persistent emission on milliarcsecond scales. The Astronomer’s Telegram 14603, 1 (2021).

    ADS  Google Scholar 

  16. Fong, W.-f et al. Chronicling the host galaxy properties of the remarkable repeating FRB 20201124A. Astrophys. J. Lett. 919, L23 (2021).

    ADS  CAS  Google Scholar 

  17. Ravi, V. et al. The host galaxy and persistent radio counterpart of FRB 20201124A. Mon. Not. R. Astron. Soc. 513, 982–990 (2022).

    ADS  CAS  Google Scholar 

  18. Murase, K., Kashiyama, K. & Mészáros, P. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants. Mon. Not. R. Astron. Soc. 461, 1498–1511 (2016).

    ADS  CAS  Google Scholar 

  19. Metzger, B. D., Berger, E. & Margalit, B. Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. Astrophys. J. 841, 14 (2017).

    ADS  Google Scholar 

  20. Margalit, B. et al. Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. Mon. Not. R. Astron. Soc. 481, 2407–2426 (2018).

    ADS  CAS  Google Scholar 

  21. CASA Team et al. CASA, the Common Astronomy Software Applications for radio astronomy. Publ. Astron. Soc. Pac. 134, 114501 (2022).

    ADS  Google Scholar 

  22. Carrasco, E. et al. MEGARA, the R=6000-20000 IFU and MOS of GTC. Proc. SPIE 10702, 1070216 (2018).

    Google Scholar 

  23. de Paz, A. G. et al. First scientific observations with MEGARA at GTC. Proc. SPIE 10702, 1070217 (2018).

    Google Scholar 

  24. Pascual, S., Cardiel, N., Picazo-Sanchez, P., Castillo-Morales, A. & de Paz, A. G. guaix-ucm/megaradrp: v0.12.0. Zenodo https://doi.org/10.5281/zenodo.6043992 (2022).

  25. Chamorro-Cazorla, M. et al. MEGADES: MEGARA galaxy disc evolution survey. Astron. Astrophys. 670, A117 (2023).

    CAS  Google Scholar 

  26. Oke, J. B. Faint spectrophotometric standard stars. Astron. J. 99, 1621–1631 (1990).

    ADS  Google Scholar 

  27. Beelen, A. et al. 350 μm dust emission from high-redshift quasars. Astrophys. J. 642, 694–701 (2006).

    ADS  CAS  Google Scholar 

  28. da Cunha, E. et al. On the effect of the cosmic microwave background in high-redshift (sub-)millimeter observations. Astrophys. J. 766, 13 (2013).

    ADS  Google Scholar 

  29. Schreiber, C. et al. Dust temperature and mid-to-total infrared color distributions for star-forming galaxies at 0 < z < 4. Astron. Astrophys. 609, A30 (2018).

    Google Scholar 

  30. Lamperti, I. et al. JINGLE – V. Dust properties of nearby galaxies derived from hierarchical Bayesian SED fitting. Mon. Not. R. Astron. Soc. 489, 4389–4417 (2019).

    ADS  Google Scholar 

  31. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    ADS  Google Scholar 

  32. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    ADS  Google Scholar 

  33. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS  Google Scholar 

  34. Osterbrock, D. E. & Ferland, G. J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei 2nd edn (University Science Books, 2005).

  35. Kennicutt, J. & Robert, C. Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–232 (1998).

    ADS  CAS  Google Scholar 

  36. Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992).

    ADS  Google Scholar 

  37. Klein, U. & Emerson, D. T. A survey of the distributions of 2.8 cm radio continuum in nearby galaxies. Astron. Astrophys. 94, 29–44 (1981).

    ADS  Google Scholar 

  38. Gioia, I. M., Gregorini, L. & Klein, U. High frequency radio continuum observations of bright spiral galaxies. Astron. Astrophys. 116, 164–174 (1982).

    ADS  Google Scholar 

  39. Tabatabaei, F. S. et al. The radio spectral energy distribution and star-formation rate calibration in galaxies. Astrophys. J. 836, 185 (2017).

    ADS  Google Scholar 

  40. Kennicutt, J. & Robert, C. Structural properties of giant H II regions in nearby galaxies. Astrophys. J. 287, 116–130 (1984).

    ADS  CAS  Google Scholar 

  41. Conti, P. S. & Crowther, P. A. MSX mid-infrared imaging of massive star birth environments – II. Giant H II regions. Mon. Not. R. Astron. Soc. 355, 899–917 (2004).

    ADS  CAS  Google Scholar 

  42. Anderson, L. D. et al. The WISE catalog of galactic H II regions. Astrophys. J. Suppl. Ser. 212, 1 (2014).

    ADS  Google Scholar 

  43. Anderson, L. D., Bania, T. M., Balser, D. S. & Rood, R. T. The Green Bank Telescope H II region discovery survey. II. The source catalog. Astrophys. J. Suppl. Ser. 194, 32 (2011).

    ADS  Google Scholar 

  44. Murphy, E. J. et al. Calibrating extinction-free star formation rate diagnostics with 33 GHz free–free emission in NGC 6946. Astrophys. J. 737, 67 (2011).

    ADS  Google Scholar 

  45. Quataert, E. & Gruzinov, A. Constraining the accretion rate onto Sagittarius A* using linear polarization. Astrophys. J. 545, 842–846 (2000).

    ADS  Google Scholar 

  46. McQuinn, M. Locating the “missing” baryons with extragalactic dispersion measure estimates. Astrophys. J. Lett. 780, L33 (2014).

    ADS  Google Scholar 

  47. Xu, H. et al. A fast radio burst source at a complex magnetized site in a barred galaxy. Nature 609, 685–688 (2022).

    ADS  CAS  PubMed  Google Scholar 

  48. Draine, B. T. Physics of the Interstellar and Intergalactic Medium (Princeton Univ. Press, 2011).

  49. Reynolds, S. P., Gaensler, B. M. & Bocchino, F. Magnetic fields in supernova remnants and pulsar-wind nebulae. Space Sci. Rev. 166, 231–261 (2012).

    ADS  CAS  Google Scholar 

  50. Richards, E. A. The nature of radio emission from distant galaxies: the 1.4 GHz observations. Astrophys. J. 533, 611–630 (2000).

    ADS  Google Scholar 

  51. Chiaraluce, E. et al. From radio-quiet to radio-silent: low-luminosity Seyfert radio cores. Mon. Not. R. Astron. Soc. 485, 3185–3202 (2019).

    ADS  CAS  Google Scholar 

  52. Panessa, F. et al. The origin of radio emission from radio-quiet active galactic nuclei. Nat. Astron. 3, 387–396 (2019).

    ADS  Google Scholar 

  53. Behar, E., Vogel, S., Baldi, R. D., Smith, K. L. & Mushotzky, R. F. The mm-wave compact component of an AGN. Mon. Not. R. Astron. Soc. 478, 399–406 (2018).

    ADS  Google Scholar 

  54. Chen, S., Laor, A., Behar, E., Baldi, R. D. & Gelfand, J. D. The radio emission in radio-quiet quasars: the VLBA perspective. Mon. Not. R. Astron. Soc. 525, 164–182 (2023).

    ADS  CAS  Google Scholar 

  55. Laor, A. & Behar, E. On the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 390, 847–862 (2008).

    ADS  CAS  Google Scholar 

  56. The Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Google Scholar 

  57. Petroff, E. et al. FRBCAT: the fast radio burst catalogue. Publ. Astron. Soc. Aust. 33, e045 (2016).

    ADS  Google Scholar 

  58. Planck Collaboration et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Google Scholar 

  59. Spitler, L. G. et al. Fast radio burst discovered in the Arecibo pulsar ALFA survey. Astrophys. J. 790, 101 (2014).

    ADS  Google Scholar 

  60. Tendulkar, S. P. et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. Lett. 834, L7 (2017).

    ADS  Google Scholar 

  61. Marcote, B. et al. The repeating fast radio burst FRB 121102 as seen on milliarcsecond angular scales. Astrophys. J. Lett. 834, L8 (2017).

    ADS  Google Scholar 

  62. The CHIME/FRB Collaboration et al. CHIME/FRB discovery of eight new repeating fast radio burst sources. Astrophys. J. Lett. 885, L24 (2019).

    ADS  Google Scholar 

  63. Marcote, B. et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 557, 190–194 (2020).

    ADS  Google Scholar 

  64. Bannister, K. W. et al. A single fast radio burst localized to a massive galaxy at cosmological distance. Science 365, 565–570 (2019).

    ADS  CAS  PubMed  Google Scholar 

  65. Prochaska, J. X. et al. The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science 365, aay0073 (2019).

    Google Scholar 

  66. Anna-Thomas, R. et al. Magnetic field reversal in the turbulent environment around a repeating fast radio burst. Science 380, 599–603 (2023).

    ADS  CAS  PubMed  Google Scholar 

  67. Bhardwaj, M. et al. A nearby repeating fast radio burst in the direction of M81. Astrophys. J. Lett. 910, L18 (2021).

    ADS  CAS  Google Scholar 

  68. Kirsten, F. et al. A repeating fast radio burst source in a globular cluster. Nature 602, 585–589 (2022).

    ADS  CAS  PubMed  Google Scholar 

  69. Bhandari, S. et al. A nonrepeating fast radio burst in a dwarf host galaxy. Astrophys. J. 948, 67 (2023).

    ADS  Google Scholar 

  70. Zhang, Y.-K. et al. FAST observations of FRB 20220912A: burst properties and polarization characteristics. Astrophys. J. 955, 142 (2023).

    ADS  Google Scholar 

  71. Hewitt, D. M. Milliarcsecond localization of the hyperactive repeating FRB 20220912A. Mon. Not. R. Astron. Soc. 529, 1814–1826 (2024).

    ADS  Google Scholar 

  72. Masui, K. et al. Dense magnetized plasma associated with a fast radio burst. Nature 528, 523–525 (2015).

    ADS  CAS  PubMed  Google Scholar 

  73. Petroff, E. et al. A polarized fast radio burst at low Galactic latitude. Mon. Not. R. Astron. Soc. 469, 4465–4482 (2017).

    ADS  CAS  Google Scholar 

  74. Keane, E. F. et al. The host galaxy of a fast radio burst. Nature 530, 453–456 (2016).

    ADS  CAS  PubMed  Google Scholar 

  75. Ravi, V. et al. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science 354, 1249–1252 (2016).

    ADS  CAS  PubMed  Google Scholar 

  76. Bhandari, S. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc. 475, 1427–1446 (2018).

    ADS  CAS  Google Scholar 

  77. Caleb, M. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts - III. Polarization properties of FRBs 160102 and 151230. Mon. Not. R. Astron. Soc. 478, 2046–2055 (2018).

    ADS  Google Scholar 

  78. Osłowski, S. et al. Commensal discovery of four fast radio bursts during Parkes Pulsar Timing Array observations. Mon. Not. R. Astron. Soc. 488, 868–875 (2019).

    ADS  Google Scholar 

  79. Connor, L. et al. A bright, high rotation-measure FRB that skewers the M33 halo. Mon. Not. R. Astron. Soc. 499, 4716–4724 (2020).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 programme under the AHEAD2020 project (grant agreement no. 871158) B.O. gratefully acknowledges support from the McWilliams Postdoctoral Fellowship at Carnegie Mellon University. Y.-P.Y. is supported by the National Natural Science Foundation of China grant no. 12003028 and the National SKA Program of China (2022SKA0130100). A.G. acknowledges financial support from the Severo Ochoa grant CEX2021-001131-S funded by MCIN/AEI/10.13039/501100011033 and from national project PGC2018-095049-B-C21 (MCIU/AEI/FEDER, UE). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work is partly based on observations carried out under project number W22BS with the Institut de Radioastronomie Millimetrique (IRAM) Northern Extended Millimeter Array (NOEMA) interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain). Partly based on observations made with the Gran Telescopio Canarias (GTC), installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma. This work is partly based on data obtained with MEGARA/MIRADAS instrument, financed by the European Regional Development Fund (ERDF), through Programa Operativo Canarias FEDER 2014–2020. We thank A. G. de Paz (Facultad Ciencias Físicas, Universidad Complutense de Madrid) for his valuable support in the MEGARA data analysis. This research made use of APLpy, an open-source plotting package for Python hosted at http://aplpy.github.io. This research made use of Astropy, a community-developed core Python package for astronomy56.

Author information

Authors and Affiliations

Authors

Contributions

G.B. led the VLA and NOEMA observational campaigns, conducted the VLA data calibration, analysis and interpretation, and led the paper writing. L.P., Y.-P.Y., B.Z. and S.S. worked on the interpretation of the results. E.P., L.N., S.Q., A.M.N.G. and A.R. conducted the GTC/MEGARA observations, data analysis and interpretation. C.F. and R.T. worked on the NOEMA data calibration and analysis. B.O. realized the host galaxy broad-band SED fitting. A.G. led the GTC/MEGARA proposal. R.P. contributed to the NOEMA proposal preparation. All authors contributed to the discussion of the results presented and commented on the manuscript.

Corresponding author

Correspondence to Gabriele Bruni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Multifrequency radio image of the host galaxy of FRB 20201124A.

Overplot of the 6-GHz VLA image from ref. 14 (in colour) with contours from the 15-GHz (black) and 22-GHz (red) VLA images from this work. The purple cross indicates the host galaxy centre and the blue cross is the FRB position.

Extended Data Fig. 2 SEDs of the cold dust emission of FRB 20201124A.

Estimated values are based on the NOEMA upper limits at 236 GHz and 250 GHz (cyan squares). a, SED computed in one beam towards the FRB position as seen in the VLA 15-GHz map. The best-fitting curves with fixed [Tdust (K), β] = [20, 1.5], [20, 2.0], [30, 1.5], [30, 2.0] are plotted as solid violet, dashed violet, solid blue and dashed blue lines, respectively. b, SED of the cold dust emission of FRB 20201124A based on the NOEMA upper limits at 236 GHz and 250 GHz (cyan squares) computed for the region >3σ in the 6-GHz map. The best-fitting curves with fixed [Tdust (K), β] = [20, 1.5], [20, 2.0], [30, 1.5], [30, 2.0] are plotted as solid violet, dashed violet, solid blue and dashed blue lines, respectively.

Extended Data Fig. 3 GTC/MEGARA maps.

a, Galactic extinction corrected Hα emission line map. b, Map of the intrinsic E(B − V) of the galaxy. We estimated the intrinsic E(B − V) taking into account galactic dust extinction and using the Balmer decrement (Hα/Hβ). In cases in which the Hβ significance falls below a 2σ threshold, no accurate correction for dust extinction is possible. For these pixels, we give a lower limit for the intrinsic E(B − V), shown in greyscale. Note that the tick labels above the two colour bars represent lower limits and actual E(B − V) values for greyscale and coloured pixels, respectively. c, Maps of the emission lines [NII] 6584, Hβ and [OIII] 5007. In cases in which the line significance falls below 2σ we give an upper limit and represent these pixels in greyscale. The tick labels above the two colour bars represent upper flux limits and actual flux values for greyscale and coloured pixels, respectively. The red and black crosses represent the FRB and galactic centre, respectively. The magenta rectangle defines the galactic region encompassing six adjacent MEGARA pixels surrounding the FRB and PRS zone. For all of the maps, pixels with an Hα significance below a 3σ threshold are omitted.

Extended Data Fig. 4 Stacked GTC/MEGARA spectra.

From left to right, Hβ, [OIII] 5007 and Hα regions are presented. a, Stacked spectra from the six pixels in the FRB region (as shown in Extended Data Fig. 3). b, Stacked spectra of the entire galaxy. Individual spectra were shifted to align with the reference redshift (z = 0.0978) before stacking to compensate for any Hα-related velocity effect. Coloured vertical dotted lines mark the centroids of the three lines at the reference redshift. We observe an absorption line at approximately 5,493 Å. However, the nature of this spectral feature remains unrecognized by our analysis. This line is observed in each individual spectrum, too.

Extended Data Fig. 5 The PRS spectrum.

a, Radio spectra of the three PRSs known so far. b, Radio spectra of the PRS, the nuclear region of the host galaxy and the total emission of the host galaxy. In both panels, power-law fits are reported as solid lines, the green dashed lines indicate the maximum and minimum slope consistent with measurements within errors for the PRS presented in this work, the yellow triangles represent the NOEMA upper limits for FRB 20201124A and the blue shaded area represents the region not detectable by the VLA, in the range 1–50 GHz (we assume a representative r.m.s. = 1 μJy beam−1, reachable in about 10 h at 6 GHz).

Extended Data Table 1 Details of radio and GTC/MEGARA observations
Extended Data Table 2 FRB sample considered in this work
Extended Data Table 3 Emission lines from the stacked spectra

Supplementary information

Supplementary Information

This Supplementary Information file provides an extension of the Methods section, in which we present the host galaxy characterization with GTC/MEGARA and its broad-band SED. The file includes Supplementary Figs. 1–5 and further references.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruni, G., Piro, L., Yang, YP. et al. A nebular origin for the persistent radio emission of fast radio bursts. Nature 632, 1014–1016 (2024). https://doi.org/10.1038/s41586-024-07782-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07782-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing