Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Opto-twistronic Hall effect in a three-dimensional spiral lattice

Abstract

Studies of moiré systems have explained the effect of superlattice modulations on their properties, demonstrating new correlated phases1. However, most experimental studies have focused on a few layers in two-dimensional systems. Extending twistronics to three dimensions, in which the twist extends into the third dimension, remains underexplored because of the challenges associated with the manual stacking of layers. Here we study three-dimensional twistronics using a self-assembled twisted spiral superlattice of multilayered WS2. Our findings show an opto-twistronic Hall effect driven by structural chirality and coherence length, modulated by the moiré potential of the spiral superlattice. This is an experimental manifestation of the noncommutative geometry of the system. We observe enhanced light–matter interactions and an altered dependence of the Hall coefficient on photon momentum. Our model suggests contributions from higher-order quantum geometric quantities to this observation, providing opportunities for designing quantum-materials-based optoelectronic lattices with large nonlinearities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration and linear optical characterization of the 3D supertwisted spirals of WS2.
Fig. 2: Opto-twistronic Hall effect measurements on the supertwisted WS2 sample.
Fig. 3: Interlinkage between the supertwisted spiral geometry and the opto-twistronic signal.
Fig. 4: Opto-twistronic Hall response from spiral lattice-photon momentum interactions.

Similar content being viewed by others

Data availability

The data in the main figures are provided with this paper. Other data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

Codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    Article  ADS  CAS  Google Scholar 

  2. Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  4. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Regan, E. C. et al. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 7, 778–795 (2022).

    Article  ADS  CAS  Google Scholar 

  6. Wang, X. et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nat. Nanotechnol. 17, 934–939 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Ma, C. et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature 604, 266–272 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zhu, Z., Carr, S., Massatt, D., Luskin, M. & Kaxiras, E. Twisted trilayer graphene: a precisely tunable platform for correlated electrons. Phys. Rev. Lett. 125, 116404 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wu, F., Zhang, R.-X. & Sarma, S. D. Three-dimensional topological twistronics. Phys. Rev. Res. 2, 022010 (2020).

    Article  CAS  Google Scholar 

  13. Wang, Y.-Q., Morimoto, T. & Moore, J. E. Optical rotation in thin chiral/twisted materials and the gyrotropic magnetic effect. Phys. Rev. B 101, 174419 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Crosse, J. & Moon, P. Quasicrystalline electronic states in twisted bilayers and the effects of interlayer and sublattice symmetries. Phys. Rev. B 103, 045408 (2021).

    Article  ADS  CAS  Google Scholar 

  15. Lian, Z. et al. Exciton superposition across moiré states in a semiconducting moiré superlattice. Nat. Commun. 14, 5042 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Liu, Y. et al. Helical van der Waals crystals with discretized Eshelby twist. Nature 570, 358–362 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Zhao, Y. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  19. Ci, P. et al. Breaking rotational symmetry in supertwisted WS2 spirals via moiré magnification of intrinsic heterostrain. Nano Lett. 22, 9027–9035 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fan, X. et al. Mechanism of extreme optical nonlinearities in spiral WS2 above the bandgap. Nano Lett. 20, 2667–2673 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Shearer, M. J. et al. Complex and noncentrosymmetric stacking of layered metal dichalcogenide materials created by screw dislocations. J. Am. Chem. Soc. 139, 3496–3504 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Plechinger, G. et al. Identification of excitons, trions and biexcitons in single‐layer WS2. Phys. Status Solidi Rapid Res. Lett. 9, 457–461 (2015).

    Article  ADS  CAS  Google Scholar 

  23. Poshakinskiy, A. V., Kazanov, D. R., Shubina, T. V. & Tarasenko, S. A. Optical activity in chiral stacks of 2D semiconductors. Nanophotonics 7, 753–762 (2018).

    Article  CAS  Google Scholar 

  24. Gao, Y., Zhang, Y. & Xiao, D. Tunable layer circular photogalvanic effect in twisted bilayers. Phys. Rev. Lett. 124, 077401 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Handa, T. et al. Spontaneous exciton dissociation in transition metal dichalcogenide monolayers. Sci. Adv. 10, eadj4060 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Kim, C.-J. et al. Chiral atomically thin films. Nat. Nanotechnol. 11, 520–524 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Ochoa, H. & Asenjo-Garcia, A. Flat bands and chiral optical response of moiré insulators. Phys. Rev. Lett. 125, 037402 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Stauber, T., Low, T. & Gómez-Santos, G. Chiral response of twisted bilayer graphene. Phys. Rev. Lett. 120, 046801 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Nguyen D. X. & Son D. T. Electrodynamics of thin sheets of twisted material. Preprint at arxiv.org/abs/2008.02812 (2020).

  32. Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 11, 421–425 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Quereda, J. et al. Symmetry regimes for circular photocurrents in monolayer MoSe2. Nat. Commun. 9, 3346 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  35. Munkhbat, B. et al. Self-hybridized exciton-polaritons in multilayers of transition metal dichalcogenides for efficient light absorption. ACS Photonics 6, 139–147 (2018).

    Article  Google Scholar 

  36. Ganichev, S. D. & Prettl, W. Spin photocurrents in quantum wells. J. Phys. Condens. Matter 15, R935 (2003).

    Article  ADS  CAS  Google Scholar 

  37. Glazov, M. & Golub, L. Valley Hall effect caused by the phonon and photon drag. Phys. Rev. B 102, 155302 (2020).

    Article  ADS  CAS  Google Scholar 

  38. Ji, Z. et al. Spatially dispersive circular photogalvanic effect in a Weyl semimetal. Nat. Mater. 18, 955–962 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Xiong, Y., Shi, L.-k & Song, J. C. W. Polariton drag enabled quantum geometric photocurrents in high-symmetry materials. Phys. Rev. B 106, 205423 (2022).

    Article  ADS  CAS  Google Scholar 

  40. Shi, L.-k, Zhang, D., Chang, K. & Song, J. C. W. Geometric photon-drag effect and nonlinear shift current in centrosymmetric crystals. Phys. Rev. Lett. 126, 197402 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Zhu, Z., Cazeaux, P., Luskin, M. & Kaxiras, E. Modeling mechanical relaxation in incommensurate trilayer van der Waals heterostructures. Phys. Rev. B 101, 224107 (2020).

    Article  ADS  CAS  Google Scholar 

  42. Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Gassner, S. & Mele, E. J. Regularized lattice theory for spatially dispersive nonlinear optical conductivities. Phys. Rev. B 108, 085403 (2023).

    Article  ADS  CAS  Google Scholar 

  44. Chaudhary, S., Lewandowski, C. & Refael, G. Shift-current response as a probe of quantum geometry and electron-electron interactions in twisted bilayer graphene. Phys. Rev. Res. 4, 013164 (2022).

    Article  CAS  Google Scholar 

  45. Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  ADS  Google Scholar 

  47. de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  ADS  PubMed  Google Scholar 

  50. Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Zhao, Y. & Jin, S. Stacking and twisting of layered materials enabled by screw dislocations and non-Euclidean surfaces. Acc. Mater. Res. 3, 369–378 (2022).

    Article  CAS  Google Scholar 

  52. Ji, Z. et al. Photocurrent detection of the orbital angular momentum of light. Science 368, 763–767 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dhara, S., Mele, E. J. & Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires. Science 349, 726–729 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X. Fan for the discussions. This work was supported by the US Air Force Office of Scientific Research (award no. FA9550-20-1-0345) and by the NSF-DMREF grant to R.A. (NSF-2323468) and S.J. (NSF-2323470). This work is also supported by NSF-2230240 and NSF-QII-TAQS-#1936276. The polariton studies were supported by the Office of Naval Research (grant no. N00014-22-1-2378). This work was also partially supported by a seed grant from the Center for Precision Engineering for Health (CPE4H) at the University of Pennsylvania. Numerical calculations were supported by a seed grant from the University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) (NSF DMR-1720530). Device fabrication and characterization work was supported by the King Abdullah University of Science and Technology (OSR-2020-CRG9-4374.3) and was carried out at the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under grant no. NNCI-1542153. Work by E.J.M. is supported by the Department of Energy under grant no. DE-FG02-84ER45118. Z.J. and Z.Z. acknowledge support from the Stanford Science fellowship.

Author information

Authors and Affiliations

Authors

Contributions

E.J.M. and Z.J. developed the theoretical model of generalized nonlinear conductivity. Z.J. and R.A. designed the experiments. Z.J. fabricated devices, and Z.J. and Y.C. performed optical Hall measurements. Y.Z. synthesized the material under the supervision of S.J.; Y.W. and Z.J. performed reflectance measurements. W.L. conducted polariton simulations. Z.Z. and E.J.M. developed theoretical models and performed numerical calculations. Y.Z., Z.J. and G.M. carried out the AFM measurements. R.A. supervised the project. Z.J., Z.Z., W.L., E.J.M. and R.A. wrote the paper with input from all authors.

Corresponding author

Correspondence to Ritesh Agarwal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Ioannis Paradisanos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Details of the linear optical measurement.

a, Optical image of the supertwisted WS2 sample, scale bar: 5 µm. b-c, The angle resolved reflectance spectra measured with left and right circularly polarized light, respectively. The colour plot shows the value of the differential reflectance (RR0)/R0 (R0 measured on the substrate, R measured on the sample). Figure 1c is the line plot averaged over 70 incidence angles.

Extended Data Fig. 2 A schematic of the experimental setup for opto-twistronic Hall effect measurements.

The retroflector controls the laser incidence angle, and the quarter wave plate controls the polarization of light.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figs. and Supplementary References.

Peer Review file

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Z., Zhao, Y., Chen, Y. et al. Opto-twistronic Hall effect in a three-dimensional spiral lattice. Nature 634, 69–73 (2024). https://doi.org/10.1038/s41586-024-07949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07949-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing