Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of non-canonical amino acids through dehydrogenative tailoring

Abstract

Amino acids are essential building blocks in biology and chemistry. Whereas nature relies on a small number of amino acid structures, chemists desire access to a vast range of structurally diverse analogues1,2,3. The selective modification of amino acid side-chain residues represents an efficient strategy to access non-canonical derivatives of value in chemistry and biology. While semisynthetic methods leveraging the functional groups found in polar and aromatic amino acids have been extensively explored, highly selective and general approaches to transform unactivated C–H bonds in aliphatic amino acids remain less developed4,5. Here we disclose a stepwise dehydrogenative method to convert aliphatic amino acids into structurally diverse analogues. The key to the success of this approach lies in the development of a selective catalytic acceptorless dehydrogenation method driven by photochemical irradiation, which provides access to terminal alkene intermediates for downstream functionalization. Overall, this strategy enables the rapid synthesis of new amino acid building blocks and suggests possibilities for the late-stage modification of more complex oligopeptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies to access non-canonical amino acids.
Fig. 2: Development of the dehydrogenation method.
Fig. 3: Product derivatization and elaboration.
Fig. 4: Dehydrogenation of oligopeptide substrates.
Fig. 5: Peptide modification enabled by dehydrogenative tailoring.

Similar content being viewed by others

Data availability

All data supporting the findings of this paper are available in the main text or the Supplementary Information.

References

  1. Hruby, V. J. & Qian, X. in Peptide Synthesis Protocols (eds Pennington, M. W. & Dunn, B. M.) 249–286 (Humana, 1995).

  2. Nájera, C. & Sansano, J. M. Catalytic asymmetric synthesis of α-amino acids. Chem. Rev. 107, 4584–4671 (2007).

    Article  PubMed  Google Scholar 

  3. Almhjell, P. J., Boville, C. E. & Arnold, F. H. Engineering enzymes for noncanonical amino acid synthesis. Chem. Soc. Rev. 47, 8980–8997 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. deGruyter, J. N., Malins, L. R. & Baran, P. S. Residue-specific peptide modification: a chemist’s guide. Biochemistry 56, 3863–3873 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. Noisier, A. F. M. & Brimble, M. A. C–H functionalization in the synthesis of amino acids and peptides. Chem. Rev. 114, 8775–8806 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Walsh, C. T., O’Brien, R. V. & Khosla, C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew. Chem. Int. Ed. Engl. 52, 7098–7124 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Blaskovich, M. A. T. Unusual amino acids in medicinal chemistry. J. Med. Chem. 59, 10807–10836 (2016).

    Article  PubMed  CAS  Google Scholar 

  8. Hickey, J. L., Sindhikara, D., Zultanski, S. L. & Schultz, D. M. Beyond 20 in the 21st century: prospects and challenges of non-canonical amino acids in peptide drug discovery. ACS Med. Chem. Lett. 14, 557–565 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Reetz, M. T. New approaches to the use of amino acids as chiral building blocks in organic synthesis. Angew. Chem. Int. Ed. Engl. 30, 1531–1546 (1991).

    Article  Google Scholar 

  10. Rezhdo, A., Islam, M., Huang, M. & Van Deventer, J. A. Future prospects for noncanonical amino acids in biological therapeutics. Curr. Opin. Biotechnol. 60, 168–178 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Saleh, A. M., Wilding, K. M., Calve, S., Bundy, B. C. & Kinzer-Ursem, T. L. Non-canonical amino acid labeling in proteomics and biotechnology. J. Biol. Eng. 13, 43 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lugtenburg, T., Gran-Scheuch, A. & Drienovská, I. Non-canonical amino acids as a tool for the thermal stabilization of enzymes. Protein Eng. Des. Sel. 36, gzad003 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aguilar Troyano, F. J., Merkens, K., Anwar, K. & Gómez‐Suárez, A. Radical‐based synthesis and modification of amino acids. Angew. Chem. Int. Ed. Engl. 60, 1098–1115 (2021).

    Article  PubMed  CAS  Google Scholar 

  14. Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Capecchi, A. & Reymond, J.-L. Peptides in chemical space. Med. Drug Discov. 9, 100081 (2021).

    Article  CAS  Google Scholar 

  16. Voica, A.-F., Mendoza, A., Gutekunst, W. R., Fraga, J. O. & Baran, P. S. Guided desaturation of unactivated aliphatics. Nat. Chem. 4, 629–635 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Herbort, J. H., Bednar, T. N., Chen, A. D., RajanBabu, T. V. & Nagib, D. A. γ C–H functionalization of amines via triple H-atom transfer of a vinyl sulfonyl radical chaperone. J. Am. Chem. Soc. 144, 13366–13373 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chuentragool, P., Parasram, M., Shi, Y. & Gevorgyan, V. General, mild, and selective method for desaturation of aliphatic amines. J. Am. Chem. Soc. 140, 2465–2468 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Wang, K. et al. Selective dehydrogenation of small and large molecules by a chloroiridium catalyst. Sci. Adv. 8, eabo6586 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 110, 681–703 (2010).

    Article  PubMed  CAS  Google Scholar 

  21. Choi, J., MacArthur, A. H. R., Brookhart, M. & Goldman, A. S. Dehydrogenation and related reactions catalyzed by iridium pincer complexes. Chem. Rev. 111, 1761–1779 (2011).

    Article  PubMed  CAS  Google Scholar 

  22. Parasram, M., Chuentragool, P., Wang, Y., Shi, Y. & Gevorgyan, V. General, auxiliary-enabled photoinduced Pd-catalyzed remote desaturation of aliphatic alcohols. J. Am. Chem. Soc. 139, 14857–14860 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Stateman, L. M., Dare, R. M., Paneque, A. N. & Nagib, D. A. Aza-heterocycles via copper-catalyzed, remote C–H desaturation of amines. Chem 8, 210–224 (2022).

    Article  PubMed  CAS  Google Scholar 

  24. Zhou, S., Zhang, Z.-J. & Yu, J.-Q. Copper-catalysed dehydrogenation or lactonization of C(sp3)–H bonds. Nature 629, 363–369 (2024).

    Article  ADS  PubMed  CAS  Google Scholar 

  25. West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  ADS  PubMed  Google Scholar 

  26. Ritu, Kolb, D., Jain, N. & König, B. Synthesis of linear enamides and enecarbamates via photoredox acceptorless dehydrogenation. Adv. Synth. Catal. 365, 605–611 (2023).

  27. Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T. & Ryu, I. Site-selective C–H functionalization by decatungstate anion photocatalysis: synergistic control by polar and steric effects expands the reaction scope. ACS Catal. 8, 701–713 (2018).

    Article  CAS  Google Scholar 

  28. Zhao, H. et al. Merging halogen-atom transfer (XAT) and cobalt catalysis to override E2-selectivity in the elimination of alkyl halides: a mild route toward contra-thermodynamic olefins. J. Am. Chem. Soc. 143, 14806–14813 (2021).

    Article  PubMed  CAS  Google Scholar 

  29. Occhialini, G., Palani, V. & Wendlandt, A. E. Catalytic, contra-thermodynamic positional alkene isomerization. J. Am. Chem. Soc. 144, 145–152 (2022).

    Article  PubMed  CAS  Google Scholar 

  30. Yamase, T., Takabayashi, N. & Kaji, M. Solution photochemistry of tetrakis(tetrabutylammonium) decatungstate(VI) and catalytic hydrogen evolution from alcohols. J. Chem. Soc. Dalton Trans. https://doi.org/10.1039/DT9840000793 (1984).

  31. Wrzyszczyński, A. et al. Unexpected Hofmann elimination in the benzophenone−(phenylthio)acetic tetrabutylammonium salt photoredox system. J. Am. Chem. Soc. 125, 11182–11183 (2003).

    Article  PubMed  Google Scholar 

  32. Fuse, H., Kojima, M., Mitsunuma, H. & Kanai, M. Acceptorless dehydrogenation of hydrocarbons by noble-metal-free hybrid catalyst system. Org. Lett. 20, 2042–2045 (2018).

    Article  PubMed  CAS  Google Scholar 

  33. Zhou, M.-J., Zhang, L., Liu, G., Xu, C. & Huang, Z. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/cobalt dual catalysis. J. Am. Chem. Soc. 143, 16470–16485 (2021).

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, Y.-A. et al. Stereochemical editing logic powered by the epimerization of unactivated tertiary stereocenters. Science 378, 383–390 (2022).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  35. Halperin, S. D., Fan, H., Chang, S., Martin, R. E. & Britton, R. A convenient photocatalytic fluorination of unactivated C–H bonds. Angew. Chem. Int. Ed. Engl. 53, 4690–4693 (2014).

    Article  PubMed  CAS  Google Scholar 

  36. Yuan, Z. et al. Site‐selective, late‐stage C–H 18F‐fluorination on unprotected peptides for positron emission tomography imaging. Angew. Chem. Int. Ed. Engl. 57, 12733–12736 (2018).

    Article  PubMed  CAS  Google Scholar 

  37. Bogart, J. W. & Bowers, A. A. Dehydroamino acids: chemical multi-tools for late-stage diversification. Org. Biomol. Chem. 17, 3653–3669 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Edagwa, B. J. & Taylor, C. M. Peptides containing γ,δ-dihydroxy-l-leucine. J. Org. Chem. 74, 4132–4136 (2009).

    Article  PubMed  CAS  Google Scholar 

  39. McLean, J. T., Milbeo, P., Lynch, D. M., McSweeney, L. & Scanlan, E. M. Radical‐mediated acyl thiol‐ene reaction for rapid synthesis of biomolecular thioester derivatives. Eur. J. Org. Chem. 2021, 4148–4160 (2021).

    Article  CAS  Google Scholar 

  40. Wakimoto, T. et al. Proof of the existence of an unstable amino acid: pleurocybellaziridine in Pleurocybella porrigens. Angew. Chem. Int. Ed. Engl. 50, 1168–1170 (2011).

    Article  PubMed  CAS  Google Scholar 

  41. Zwick, C. R. & Renata, H. Remote C–H hydroxylation by an α-ketoglutarate-dependent dioxygenase enables efficient chemoenzymatic synthesis of manzacidin C and proline analogs. J. Am. Chem. Soc. 140, 1165–1169 (2018).

    Article  PubMed  CAS  Google Scholar 

  42. Tao, H. et al. Stereoselectivity and substrate specificity of the FeII/α-ketoglutarate-dependent oxygenase TqaL. J. Am. Chem. Soc. 144, 21512–21520 (2022).

    Article  PubMed  CAS  Google Scholar 

  43. Gomez, C. A., Mondal, D., Du, Q., Chan, N. & Lewis, J. C. Directed evolution of an iron(II)‐ and α‐ketoglutarate-dependent dioxygenase for site-selective azidation of unactivated aliphatic C–H bonds. Angew. Chem. Int. Ed. Engl. 62, e202301370 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Nanjo, T., De Lucca, E. C. & White, M. C. Remote, late-stage oxidation of aliphatic C–H bonds in amide-containing molecules. J. Am. Chem. Soc. 139, 14586–14591 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Sarver, P. J., Bissonnette, N. B. & MacMillan, D. W. C. Decatungstate-catalyzed C(sp3)–H sulfinylation: rapid access to diverse organosulfur functionality. J. Am. Chem. Soc. 143, 9737–9743 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Galonić, D. P., Vaillancourt, F. H. & Walsh, C. T. Halogenation of unactivated carbon centers in natural product biosynthesis: trichlorination of leucine during barbamide biosynthesis. J. Am. Chem. Soc. 128, 3900–3901 (2006).

    Article  PubMed  Google Scholar 

  47. Cudic, M., Marí, F. & Fields, G. B. Synthesis and solid-phase application of suitably protected γ-hydroxyvaline building blocks. J. Org. Chem. 72, 5581–5586 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shu, C., Noble, A. & Aggarwal, V. K. Metal-free photoinduced C(sp3)–H borylation of alkanes. Nature 586, 714–719 (2020).

    Article  ADS  PubMed  CAS  Google Scholar 

  49. Barbie, P. & Kazmaier, U. Total synthesis of cyclomarins A, C and D, marine cyclic peptides with interesting anti-tuberculosis and anti-malaria activities. Org. Biomol. Chem. 14, 6036–6054 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Agami, C. et al. Asymmetric syntheses of enantiopure 4-substituted pipecolic acid derivatives. Eur. J. Org. Chem. 2001, 2385–2389 (2001).

    Article  Google Scholar 

  51. Ferraboschi, P., Mieri, M. D., Grisenti, P., Lotz, M. & Nettekoven, U. Diastereoselective synthesis of an argatroban intermediate, ethyl (2R,4R)-4-methylpipecolate, by means of a mandyphos/rhodium complex-catalyzed hydrogenation. Tetrahedron Asymmetry 22, 1626–1631 (2011).

    Article  CAS  Google Scholar 

  52. Smaligo, A. J. et al. Hydrodealkenylative C(sp3)–C(sp2) bond fragmentation. Science 364, 681–685 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Yang (MIT) for HPLC separation of product 2p and S. Garhwal (MIT) for supercritical fluid chromatography data collection. Financial support for this work was provided by the National Institutes of Health (GM146248) and the National Science Foundation (NSF) through a Graduate Research Fellowship to G.O. (DGE1745303).

Author information

Authors and Affiliations

Authors

Contributions

A.E.W., X.G. and Y.-A.Z. conceived the work, designed experiments and analysed the data. L.W. and S.Z. contributed equally to substrate synthesis and characterization. X.Y. and B.L.P. provided expertise on the synthesis and analysis of oligopeptides. G.O. and J.B. performed exploratory experiments establishing the feasibility of terminal-selective aliphatic dehydrogenation. A.E.W., X.G. and Y.-A.Z. drafted the manuscript with input from all authors. A.E.W. directed the research. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Alison E. Wendlandt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Jonathan Clayden, Christopher Teskey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Information; for details, see Table of Contents.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Zhang, YA., Zhang, S. et al. Synthesis of non-canonical amino acids through dehydrogenative tailoring. Nature 634, 352–358 (2024). https://doi.org/10.1038/s41586-024-07988-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07988-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing