Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selection bias obfuscates the discovery of fast radio burst sources

Abstract

Fast radio bursts (FRBs) are a newly discovered class of extragalactic radio transients characterized by their high energy and short duration (from microseconds to milliseconds)1. The physical origin of these FRBs remains unknown and is a subject of ongoing research, with magnetars emerging as leading candidates2,3. Previous studies have used various methodologies to address the problem of FRB origin, including demographic analyses of FRB host galaxies and their local environments4,5,6, assessments of FRB rate evolution with redshift7,8,9 and searches for proposed multi-messenger FRB counterparts10. However, these studies are susceptible to substantial biases stemming from unaccounted radio and optical selection effects. Here we present empirical evidence for a substantial selection bias against detecting FRBs in galaxies with large inclination angles (edge-on) using a sample of hosts identified for FRBs discovered by untargeted surveys. This inclination-related bias probably leads to a significant underestimation (by about a factor of two) of the FRB rates reported in the literature and disfavours globular clusters as the dominant origin of FRB sources, as previously speculated6. These conclusions have important implications for FRB progenitor models and targeted FRB follow-up strategies. We further investigate the impact of this bias on the relative rate of FRBs in different host environments. Our analysis suggests that scattering in FRB hosts is probably responsible for the observed bias11,12. However, a larger sample of localized FRBs is required to robustly quantify the contribution of scattering to the inclination-related selection bias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CDF of inclination angles for FRB hosts and SDSS galaxies.
Fig. 2: FRB host galaxy properties across bins with different inclination angles.

Similar content being viewed by others

Data availability

The data that support the plots in this paper and other findings of this study are available from the corresponding author upon reasonable request. The Pan-STARRS DR1, SDSS DR16 and DESI optical r-band imaging data used in this analysis can be accessed from the publicly available MAST SDSS Data Archive Server, MAST PS1 Science Archive Server and DESI Legacy Imaging Survey interface, respectively, or can be downloaded from GitHub (https://github.com/Astronomer-Mohit/Bhardwajetal_2024_nature_inclination_angle).

Code availability

The following software packages were used to analyse the data presented in this paper: APLpy69, astropy70, AutoProf19, Photutils20 and Scipy71. The codes used for data processing and producing the figures are available from GitHub (https://github.com/Astronomer-Mohit/Bhardwajetal_2024_nature_inclination_angle) or from the corresponding author upon reasonable request.

References

  1. Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F. A bright millisecond radio burst of extragalactic origin. Science 318, 777–780 (2007).

    ADS  CAS  PubMed  Google Scholar 

  2. The CHIME/FRB Collaboration. A bright millisecond-duration radio burst from a galactic magnetar. Nature 587, 54–58 (2020).

    ADS  Google Scholar 

  3. Bochenek, C. D. et al. A fast radio burst associated with a galactic magnetar. Nature 587, 59–62 (2020).

    ADS  CAS  PubMed  Google Scholar 

  4. Li, Y. & Zhang, B. A comparative study of host galaxy properties between fast radio bursts and stellar transients. Astrophys. J. Lett. 899, L6 (2020).

    ADS  CAS  Google Scholar 

  5. Gordon, A. C. et al. The demographics, stellar populations, and star formation histories of fast radio burst host galaxies: implications for the progenitors. Astrophys. J. 954, 80 (2023).

    ADS  Google Scholar 

  6. Bhardwaj, M. et al. Host galaxies for four nearby CHIME/FRB sources and the local universe FRB host galaxy population. Astrophys. J. Lett. 971, L51 (2024).

  7. Luo, R. et al. On the FRB luminosity function – II. Event rate density. Mon. Not. R. Astron. Soc. 494, 665–679 (2020).

    ADS  CAS  Google Scholar 

  8. Hashimoto, T. et al. No redshift evolution of non-repeating fast radio burst rates. Mon. Not. R. Astron. Soc. 498, 3927–3945 (2020).

    ADS  CAS  Google Scholar 

  9. Zhang, R. C., Zhang, B., Li, Y. & Lorimer, D. R. On the energy and redshift distributions of fast radio bursts. Mon. Not. R. Astron. Soc 501, 157–167 (2021).

    ADS  CAS  Google Scholar 

  10. Nicastro, L. et al. Multiwavelength observations of fast radio bursts. Universe 7, 76 (2021).

    ADS  CAS  Google Scholar 

  11. Chawla, P. et al. Modeling fast radio burst dispersion and scattering properties in the first CHIME/FRB catalog. Astrophys. J. 927, 35 (2022).

    ADS  Google Scholar 

  12. Ocker, S. K., Cordes, J. M., Chatterjee, S. & Gorsuch, M. R. Radio scattering horizons for galactic and extragalactic transients. Astrophys. J. 934, 71 (2022).

    ADS  Google Scholar 

  13. Aggarwal, K. et al. Probabilistic association of transients to their hosts (PATH). Astrophys. J. 911, 95 (2021).

    ADS  CAS  Google Scholar 

  14. Macquart, J.-P. et al. The Commensal Real-Time ASKAP Fast-Transients (CRAFT) survey. Publ. Astron. Soc. Aust. 27, 272–282 (2010).

    ADS  Google Scholar 

  15. Law, C. J. et al. Deep synoptic array science: first FRB and host galaxy catalog. Astrophys J. 967, 29 (2024).

  16. The CHIME/FRB Collaboration. CHIME/FRB discovery of 25 repeating fast radio burst sources. Astrophys. J. 947, 83 (2023).

    ADS  Google Scholar 

  17. Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at https://arxiv.org/abs/1612.05560 (2016).

  18. DESI Collaboration. The DESI Experiment Part I: science, targeting, and survey design. Preprint at https://arxiv.org/abs/1611.00036 (2016).

  19. Stone, C. J., Arora, N., Courteau, S. & Cuillandre, J.-C. AutoProf – I. An automated non-parametric light profile pipeline for modern galaxy surveys. Mon. Not. R. Astron. Soc. 508, 1870–1887 (2021).

    ADS  Google Scholar 

  20. Bradley, L. astropy/photutils: 1.8.0. Zenodo https://doi.org/10.5281/zenodo.7946442 (2023).

  21. Yuan, F.-T., Lu, J., Shen, S. & Boquien, M. Asymmetry revisited: the effect of dust attenuation and galaxy inclination. Astrophys. J. 911, 145 (2021).

    ADS  CAS  Google Scholar 

  22. Chatterjee, S. et al. A direct localization of a fast radio burst and its host. Nature 541, 58–61 (2017).

    ADS  CAS  PubMed  Google Scholar 

  23. Niu, C. H. et al. A repeating fast radio burst associated with a persistent radio source. Nature 606, 873–877 (2022).

    ADS  CAS  PubMed  Google Scholar 

  24. Saadeh, D., Feeney, S. M., Pontzen, A., Peiris, H. V. & McEwen, J. D. How isotropic is the universe? Phys. Rev. Lett. 117, 131302 (2016).

    ADS  PubMed  Google Scholar 

  25. Joachimi, B. et al. Galaxy alignments: an overview. Space Sci. Rev. 193, 1–65 (2015).

    ADS  Google Scholar 

  26. Ahumada, R. et al. The 16th data release of the Sloan Digital Sky Surveys: first release from the APOGEE-2 Southern Survey and full release of eBOSS spectra. Astrophys. J. Suppl. Ser. 249, 3 (2020).

    ADS  CAS  Google Scholar 

  27. Strateva, I. et al. Color separation of galaxy types in the Sloan Digital Sky Survey imaging data. Astron. J. 122, 1861–1874 (2001).

    ADS  CAS  Google Scholar 

  28. Scholz, F. W. & Stephens, M. A. K-sample anderson–darling tests. J. Am. Stat. Assoc. 82, 918–924 (1987).

    MathSciNet  Google Scholar 

  29. Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    MathSciNet  Google Scholar 

  30. Ravi, V. The prevalence of repeating fast radio bursts. Nat. Astron. 3, 928–931 (2019).

    ADS  Google Scholar 

  31. Bhardwaj, M. et al. A local universe host for the repeating fast radio burst FRB 20181030A. Astrophys. J. Lett. 919, L24 (2021).

    ADS  CAS  Google Scholar 

  32. James, C. W. Modelling repetition in zDM: a single population of repeating fast radio bursts can explain CHIME data. Publ. Astron. Soc. Aust. 40, e057 (2023).

    ADS  Google Scholar 

  33. Pelliciari, D. et al. The Northern Cross Fast Radio Burst project. III. The FRB-magnetar connection in a sample of nearby galaxies. Astron. Astrophys. 674, A223 (2023).

    MathSciNet  Google Scholar 

  34. Agarwal, D. et al. A fast radio burst in the direction of the Virgo Cluster. Mon. Not. R. Astron. Soc. 490, 1–8 (2019).

    ADS  Google Scholar 

  35. Mackey, A. D. & Gilmore, G. F. Comparing the properties of local globular cluster systems: implications for the formation of the Galactic halo. Mon. Not. R. Astron. Soc. 355, 504–534 (2004).

    ADS  CAS  Google Scholar 

  36. Bhardwaj, M. et al. A nearby repeating fast radio burst in the direction of M81. Astrophys. J. Lett. 910, L18 (2021).

    ADS  CAS  Google Scholar 

  37. Kirsten, F. et al. A repeating fast radio burst source in a globular cluster. Nature 602, 585–589 (2022).

    ADS  CAS  PubMed  Google Scholar 

  38. Xu, J. & Han, J. L. Extragalactic dispersion measures of fast radio bursts. Res. Astron. Astrophys. 15, 1629–1638 (2015).

    ADS  CAS  Google Scholar 

  39. Cordes, J. M., Wharton, R. S., Spitler, L. G., Chatterjee, S. & Wasserman, I. Radio wave propagation and the provenance of fast radio bursts. Preprint at https://arxiv.org/abs/1605.05890 (2016).

  40. Wada, K. & Norman, C. A. Density structure of the interstellar medium and the star formation rate in galactic disks. Astrophys. J. 660, 276–287 (2007).

    ADS  Google Scholar 

  41. Ejdetjärn, T., Agertz, O., Östlin, G., Renaud, F. & Romeo, A. B. From giant clumps to clouds - III. The connection between star formation and turbulence in the ISM. Mon. Not. R. Astron. Soc. 514, 480–496 (2022).

    ADS  Google Scholar 

  42. Salim, S. Green Valley Galaxies. Serb. Astron. J. 189, 1–14 (2014).

    ADS  Google Scholar 

  43. van den Bergh, S. & Tammann, G. A. Galactic and extragalactic supernova rates. Annu. Rev. Astron. Astrophys. 29, 363–407 (1991).

    ADS  Google Scholar 

  44. Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004).

    ADS  CAS  Google Scholar 

  45. The CHIME/FRB Collaboration. The first CHIME/FRB fast radio burst catalog. Astrophys. J. Suppl. Ser. 257, 59 (2021).

    ADS  Google Scholar 

  46. Lee-Waddell, K. et al. The host galaxy of FRB 20171020A revisited. Publ. Astron. Soc. Aust. 40, e029 (2023).

    ADS  Google Scholar 

  47. Ravi, V. et al. Deep Synoptic Array Science: discovery of the host galaxy of FRB 20220912A. Astrophys. J. Lett. 949, L3 (2023).

    ADS  Google Scholar 

  48. Cordes, J. M. & Lazio, T. J. W. NE2001.I. A new model for the galactic distribution of free electrons and its fluctuations. Preprint at https://arxiv.org/abs/astro-ph/0207156 (2002).

  49. Macquart, J.-P. et al. A census of baryons in the Universe from localized fast radio bursts. Nature 581, 391–395 (2020).

    ADS  CAS  PubMed  Google Scholar 

  50. Hubble, E. Extragalactic nebulae. Astrophys. J. 64, 321–369 (1926).

    ADS  Google Scholar 

  51. van den Bergh, S. Inclinations and axial ratios of spiral and irregular galaxies. Publ. Astron. Soc. Pac. 100, 344–345 (1988).

    ADS  Google Scholar 

  52. Unterborn, C. T. & Ryden, B. S. Inclination-dependent extinction effects in disk galaxies in the Sloan Digital Sky Survey. Astrophys. J. 687, 976–985 (2008).

    ADS  Google Scholar 

  53. Japelj, J. et al. Host galaxies of SNe Ic-BL with and without long gamma-ray bursts. Astron. Astrophys. 617, A105 (2018).

    Google Scholar 

  54. Sérsic, J. L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Bol. Asoc. Argent. Astron. 6, 41–43 (1963).

    ADS  Google Scholar 

  55. Jedrzejewski, R. I. CCD surface photometry of elliptical galaxies - I. Observations, reduction and results. Mon. Not. R. Astron. Soc. 226, 747–768 (1987).

    ADS  Google Scholar 

  56. Ciambur, B. C. Beyond ellipse(s): accurately modeling the isophotal structure of galaxies with ISOFIT and CMODEL. Astrophys. J. 810, 120 (2015).

    ADS  Google Scholar 

  57. Merryfield, M. et al. An injection system for the CHIME/FRB experiment. Astron. J. 165, 152 (2023).

    ADS  Google Scholar 

  58. Ibik, A. L. et al. Proposed host galaxies of repeating fast radio burst sources detected by CHIME/FRB. Astrophys. J. 961, 99 (2024).

    ADS  Google Scholar 

  59. Bannister, K. W. et al. A single fast radio burst localized to a massive galaxy at cosmological distance. Science 365, 565–570 (2019).

    ADS  CAS  PubMed  Google Scholar 

  60. Day, C. K. et al. High time resolution and polarization properties of ASKAP-localized fast radio bursts. Mon. Not. R. Astron. Soc. 497, 3335–3350 (2020).

    ADS  Google Scholar 

  61. Qiu, H. et al. A population analysis of pulse broadening in ASKAP fast radio bursts. Mon. Not. R. Astron. Soc. 497, 1382–1390 (2020).

    ADS  Google Scholar 

  62. Bhandari, S. et al. Limits on precursor and afterglow radio emission from a fast radio burst in a star-forming galaxy. Astrophys. J. Lett. 901, L20 (2020).

    ADS  CAS  Google Scholar 

  63. Caleb, M. et al. A subarcsec localized fast radio burst with a significant host galaxy dispersion measure contribution. Mon. Not. R. Astron. Soc. 524, 2064–2077 (2023).

    ADS  CAS  Google Scholar 

  64. Connor, L. et al. Deep synoptic array science: two fast radio burst sources in massive galaxy clusters. Astrophys. J. Lett. 949, L26 (2023).

    ADS  Google Scholar 

  65. Zhang, Y.-K. et al. FAST observations of FRB 20220912A: burst properties and polarization characteristics. Astrophys. J. 955, 142 (2023).

    ADS  CAS  Google Scholar 

  66. Orr, M. E., Burkhart, B., Lu, W., Ponnada, S. B. & Hummels, C. B. Objects may be closer than they appear: significant host galaxy dispersion measures of fast radio bursts in zoom-in simulations. Preprint at https://arxiv.org/abs/2406.03523 (2024).

  67. Anna-Thomas, R. et al. Magnetic field reversal in the turbulent environment around a repeating fast radio burst. Science 380, 599–603 (2023).

    ADS  CAS  PubMed  Google Scholar 

  68. Ocker, S. K. et al. Scattering variability detected from the circumsource medium of FRB 20190520B. Mon. Not. R. Astron. Soc. 519, 821–830 (2023).

    ADS  CAS  Google Scholar 

  69. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. mcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    ADS  Google Scholar 

  70. The Astropy Collaboration. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Google Scholar 

  71. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Lang for the discussions. We also thank C. Stone for assisting with the profile-fitting routines of AutoProf. This research used Photutils, an Astropy package for the detection and photometry of astronomical sources. M.B. is a McWilliams fellow and an International Astronomical Union Gruber fellow. M.B. receives support from the McWilliams seed grant.

Author information

Authors and Affiliations

Authors

Contributions

M.B. conceived the methodology and framework of this work. K.J. conducted the initial analysis for this project under the supervision of M.B. However, all the results presented in this work were refined by J.L. with the assistance of M.B. M.B. led the writing of this paper, with J.L. contributing to the Methods section.

Corresponding author

Correspondence to Mohit Bhardwaj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks James Cordes, Jason Hessels and Maura McLaughlin for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Fig. 1 Parametric profile fitting results for 23 FRB host galaxies using the AutoProf package.

For each galaxy, we show three images - (left) r-band image of the host, (center) best-fitted galaxy model, and (right) resultant residual. The numbers in the top left of each r-band image correspond to the host number and the estimated inclination angle (in degrees, quoted in parentheses), as shown in Table 1. The X-axis and Y-axis of all plots represent right ascension and declination, respectively.

Extended Data Fig. 2 Non-parametric profile fitting results for 23 FRB host galaxies using the Photutils package.

For each galaxy, we show three images - (left) r-band image of the host, (center) best-fitted galaxy model, and (right) resultant residual. The numbers in the top left of each r-band image correspond to the host number and the estimated inclination angle (in degrees, quoted in parentheses), as shown in Table 1. The X-axis and Y-axis of all plots represent right ascension and declination, respectively.

Extended Data Fig. 3 Histogram of Cosine of Inclination Angles for SDSS-DR16 Galaxies.

This histogram illustrates the distribution of cos(i) values for galaxies sampled from the SDSS-DR16 catalog, following the selection criteria described in the Methods section.

Extended Data Fig. 4 Comparison of Cosine of Inclination Angle (cos(i)) CDFs for SDSS Galaxies and FRB Hosts.

The top plot shows the mean \(\cos (i)\) CDF for randomly sampled SDSS galaxies, employing a methodology similar to that used for Fig. 1, albeit with variations in u − r color thresholds. Similarly, the bottom left plot illustrates the impact on the mean \(\cos (i)\) CDF of SDSS galaxies for different mr thresholds. Finally, the bottom right plot displays the \(\cos (i)\) CDF where SDSS galaxies are sampled in each iteration to match the mr distribution of our FRB host sample. The blue shaded region represents the 68% credible bound on the SDSS galaxy CDF to account for the small sample size. In all cases, the SDSS galaxy CDFs are found to be statistically different from the \(\cos (i)\) CDF of FRB hosts in our sample, depicted in red in all three plots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, M., Lee, J. & Ji, K. Selection bias obfuscates the discovery of fast radio burst sources. Nature 634, 1065–1069 (2024). https://doi.org/10.1038/s41586-024-08065-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08065-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing