Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homogenized contact in all-perovskite tandems using tailored 2D perovskite

Subjects

Abstract

The fabrication of scalable all-perovskite tandem solar cells is considered an attractive route to commercialize perovskite photovoltaic modules1. However, the certified efficiency of 1-cm2-scale all-perovskite tandem solar cells lags behind their small-area (approximately 0.05-cm2) counterparts2,3. This performance deficit originates from inhomogeneity in wide-bandgap (WBG) perovskite solar cells (PSCs) at a large scale. The inhomogeneity is known to be introduced at the bottom interface and within the perovskite bulk itself4,5. Here we uncover another crucial source for the inhomogeneity—the top interface formed during the deposition of the electron transport layer (ETL; C60). Meanwhile, the poor ETL interface is also a notable limitation of device performance. We address this issue by introducing a mixture of 4-fluorophenethylamine (F-PEA) and 4-trifluoromethyl-phenylammonium (CF3-PA) to create a tailored 2D perovskite layer (TTDL), in which F-PEA forms a 2D perovskite at the surface, reducing contact losses and inhomogeneity, and CF3-PA enhances charge extraction and transport. As a result, we demonstrate a high open-circuit voltage (Voc) of 1.35 V and an efficiency of 20.5% in 1.77-eV WBG PSCs at a square-centimetre scale. By stacking with a narrow-bandgap (NBG) perovskite subcell, we report 1.05-cm2 all-perovskite tandem cells delivering 28.5% (certified 28.2%) efficiency, the highest reported so far. Our work showcases the importance of treating the top perovskite/ETL contact for upscaling PSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Uniformity of perovskite films and devices.
Fig. 2: The formation mechanism and function of TTDL with enhanced uniformity.
Fig. 3: The performance of WBG PSCs.
Fig. 4: The performance of monolithic all-perovskite tandem solar cells.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials. Further data are available from the corresponding author on request.

References

  1. Li, H. & Zhang, W. Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120, 9835–9950 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Green, M. A. et al. Solar cell efficiency tables (Version 60). Prog. Photovolt. Res. Appl. 30, 687–701 (2022).

    Article  Google Scholar 

  3. Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Gao, H. et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kojima, A. et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).

    Article  MathSciNet  CAS  Google Scholar 

  11. Fu, F. et al. High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nat. Energy 2, 16190 (2017).

    Article  ADS  CAS  Google Scholar 

  12. Stolterfoht, M. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019).

    Article  CAS  Google Scholar 

  13. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022).

    Article  CAS  Google Scholar 

  14. Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016).

    Article  ADS  Google Scholar 

  15. Stolterfoht, M. et al. How to quantify the efficiency potential of neat perovskite films: perovskite semiconductors with an implied efficiency exceeding 28%. Adv. Mater. 32, 2000080 (2020).

    Article  CAS  Google Scholar 

  16. Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018).

    Article  ADS  CAS  Google Scholar 

  17. Penã-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Lett. 5, 2728–2736 (2020).

    Article  Google Scholar 

  18. Liu, J. et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Yang, Z. et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10, 4498 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Warby, J. et al. Understanding performance limiting interfacial recombination in pin perovskite solar cells. Adv. Energy Mater. 12, 2103567 (2022).

    Article  CAS  Google Scholar 

  22. Kavadiya, S. et al. Investigation of the selectivity of carrier transport layers in wide‐bandgap perovskite solar cells. Sol. RRL 5, 2100107 (2021).

    Article  CAS  Google Scholar 

  23. Peng, J. et al. A universal double‐side passivation for high open‐circuit voltage in perovskite solar cells: role of carbonyl groups in poly(methyl methacrylate). Adv. Energy Mater. 8, 1801208 (2018).

    Article  Google Scholar 

  24. Cheng, B. et al. Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Commun. Phys. 1, 80 (2018).

    Article  Google Scholar 

  25. Li, P. et al. Dredging the charge‐carrier transfer pathway for efficient low‐dimensional Ruddlesden‐Popper perovskite solar cells. Angew. Chem. Int. Ed. 62, 202217910 (2023).

    Article  ADS  Google Scholar 

  26. Yusoff, A. R., bin, M. & Nazeeruddin, M. K. Low-dimensional perovskites: from synthesis to stability in perovskite solar cells. Adv. Energy Mater. 8, 1702073 (2018).

    Article  Google Scholar 

  27. Li, Z. et al. Hybrid perovskite‐organic flexible tandem solar cell enabling highly efficient electrocatalysis overall water splitting. Adv. Energy Mater. 10, 2000361 (2020).

    Article  CAS  Google Scholar 

  28. Shin, D. et al. The electronic properties of a 2D Ruddlesden‐Popper perovskite and its energy level alignment with a 3D perovskite enable interfacial energy transfer. Adv. Funct. Mater. 33, 2208980 (2023).

    Article  CAS  Google Scholar 

  29. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    Article  ADS  CAS  Google Scholar 

  30. Luo, L. et al. Stabilization of 3D/2D perovskite heterostructures via inhibition of ion diffusion by cross-linked polymers for solar cells with improved performance. Nat. Energy 8, 294–303 (2023).

    ADS  CAS  Google Scholar 

  31. Hu, S. et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022).

    Article  CAS  Google Scholar 

  32. Baldo, M. A. & Forrest, S. R. Interface-limited injection in amorphous organic semiconductors. Phys. Rev. B 64, 85201 (2001).

    Article  ADS  Google Scholar 

  33. Saidaminov, M. I. et al. Multi-cation perovskites prevent carrier reflection from grain surfaces. Nat. Mater. 19, 412–418 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. He, B. et al. Improving crystallinity and out‐of‐plane orientation in quasi‐2D Ruddlesden‐Popper perovskite by fluorinated organic salt for light‐emitting diodes. Small 19, 2303255 (2023).

    Article  CAS  Google Scholar 

  35. Onno, A., Chen, C., Koswatta, P., Boccard, M. & Holman, Z. C. Passivation, conductivity, and selectivity in solar cell contacts: concepts and simulations based on a unified partial-resistances framework. J. Appl. Phys. 126, 183103 (2019).

    Article  ADS  Google Scholar 

  36. Kirchartz, T. et al. Photoluminescence‐based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10, 1904134 (2020).

    Article  CAS  Google Scholar 

  37. Krogmeier, B. et al. Quantitative analysis of the transient photoluminescence of CH3NH3PbI3/PC61BM heterojunctions by numerical simulations. Sustain. Energy Fuels 2, 1027–1034 (2018).

    Article  CAS  Google Scholar 

  38. Krückemeier, L., Krogmeier, B., Liu, Z., Rau, U. & Kirchartz, T. Understanding transient photoluminescence in halide perovskite layer stacks and solar cells. Adv. Energy Mater. 11, 2003489 (2021).

    Article  Google Scholar 

  39. Ren, H. et al. Efficient and stable Ruddlesden–Popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photon. 14, 154–163 (2020).

    Article  ADS  CAS  Google Scholar 

  40. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  ADS  Google Scholar 

  41. Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

    Article  ADS  Google Scholar 

  42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Van De Walle, A. et al. Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013).

    Article  Google Scholar 

  47. Wei, S. H., Ferreira, L. G., Bernard, J. E. & Zunger, A. Electronic properties of random alloys: special quasirandom structures. Phys. Rev. B 42, 9622–9649 (1990).

    Article  ADS  CAS  Google Scholar 

  48. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010).

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2022YFB4200304), National Natural Science Foundation of China (T2325016, U21A2076, 61974063, 62125402, 62321166653, 62305150, 52302327), Natural Science Foundation of Jiangsu Province (BE2022021, BE2022026, BK20202008, BK20190315, BK20232022), Fundamental Research Funds for the Central Universities (0213/14380206, 0205/14380252), Frontiers Science Center for Critical Earth Material Cycling Fund (DLTD2109) and the ‘GeoX’ Interdisciplinary Research Funds for the Frontiers Science Center for Critical Earth Material Cycling, Nanjing University and Program for Innovative Talents and Entrepreneur in Jiangsu. C.C. acknowledges the support of a Marshall Scholarship, Winton Scholarship and the Cambridge Trust. Y.H., a Japan Society for the Promotion of Science (JSPS) Overseas Research Fellow, acknowledges the financial support from the JSPS. M.I.S. is grateful to Canada Research Chairs Program (CRC-2019-00297) for operational support. We acknowledge the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement no. 756962) and the Engineering and Physical Sciences Research Council (EPSRC) (grant agreement no. EP/V027131/1). S.D.S. acknowledges the Royal Society and Tata Group (grant no. UF150033). Grazing-incidence wide-angle X-ray scattering experiments were carried out at beamline 02U2, Shanghai Synchrotron Radiation Facility (SSRF). Calculations were performed in part at the High Performance Computing Center of Jilin University.

Author information

Authors and Affiliations

Authors

Contributions

H.T. conceived and directed the overall project. Y.W., R.L. and C.L. fabricated all the devices and conducted the characterization. A.D.B. and H.T.N. performed the photoluminescence and electroluminescence imaging characterization. H.S., X.Z., H.L., P.W., H.G., H.Z., X.L. and L.L. helped with the device fabrication and material characterization. W.S. and Y.N. performed the atomic force microscopy imaging characterization. C.C. performed the intensity-dependent quasi-Fermi level splitting measurements and pseudo-JV analysis under the supervision of S.D.S. M.L. and C.X. performed the atomic Kelvin probe force microscopy imaging characterization. X.W., K.Z. and L.Z. performed the first-principles calculations. Y.W., X.W., Y.H., M.I.S., S.D.S., L.Z. and H.T. wrote the manuscript. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Samuel D. Stranks, Lijun Zhang or Hairen Tan.

Ethics declarations

Competing interests

H.T. is the founder, chief scientific officer and chairman of Renshine Solar Co. Ltd., a company that is commercializing perovskite photovoltaics. S.D.S. is a co-founder of Swift Solar. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Supplementary Figs. 1–48, Supplementary Tables 1–9 and Supplementary References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lin, R., Liu, C. et al. Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635, 867–873 (2024). https://doi.org/10.1038/s41586-024-08158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08158-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing