Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent growth of high-Miller-index facets enhances perovskite solar cells

Subjects

Abstract

Obtaining micron-thick perovskite films of high quality is key to realizing efficient and stable positive (p)-intrinsic (i)-negative (n) perovskite solar cells1,2, but it remains a challenge. Here we report an effective method for producing high-quality, micron-thick formamidinium-based perovskite films by forming coherent grain boundaries, in which high-Miller-index-oriented grains grow on the low-Miller-index-oriented grains in a stabilized atmosphere. The resulting micron-thick perovskite films, with enhanced grain boundaries and grains, showed stable material properties and outstanding optoelectronic performances. The small-area solar cells achieved efficiencies of 26.1%. The 1-cm2 devices and 5 cm × 5 cm mini-modules delivered efficiencies of 24.3% and 21.4%, respectively. The devices processed in a stabilized atmosphere presented a high reproducibility across all four seasons. The encapsulated devices exhibited superior long-term stability under both light and thermal stressors in ambient air.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optimal thickness predictions and thickness control.
Fig. 2: Engineering high-Miller-index facets in micron-thick perovskites, alongside DFT calculations.
Fig. 3: Atomic-scale high-resolution Cryo-TEM images and coherent grain boundaries.
Fig. 4: Device performance and stability.

Similar content being viewed by others

References

  1. Luo, D. et al. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2019).

    Article  ADS  Google Scholar 

  2. Chen, P. et al. Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 625, 516–522 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Jeng, J.-Y. et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, T. et al. Inverted perovskite solar cells: progresses and perspectives. Adv. Energy Mater. 6, 1600457 (2016).

    Article  ADS  Google Scholar 

  5. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Zheng, X. et al. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8, 462–472 (2023).

    Article  ADS  CAS  Google Scholar 

  7. Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 379, 683–690 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Lin, Q. et al. Electro-optics of perovskite solar cells. Nat. Photon. 9, 106–112 (2015).

    Article  ADS  CAS  Google Scholar 

  11. Luo, X. et al. Record photocurrent density over 26 mA cm−2 in planar perovskite solar cells enabled by antireflective cascaded electron transport layer. Sol. RRL 4, 2000169 (2020).

    Article  CAS  Google Scholar 

  12. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    Article  ADS  CAS  Google Scholar 

  13. Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    Article  ADS  CAS  Google Scholar 

  15. Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 611, 278–283 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Li, C. et al. Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells. Science 379, 690–694 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Liu, X. et al. Stabilization of photoactive phases for perovskite photovoltaics. Nat. Rev. Chem. 7, 462–479 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Ma, C. et al. Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells. Science 379, 173–178 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Geelhaar, L. et al. GaAs (2 5 11): a new stable surface within the stereographic triangle. Phys. Rev. Lett. 86, 3815–3818 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Geelhaar, L., Temko, Y., Márquez, J., Krater, P. & Jacobi, K. Surface structure of GaAs (2 5 11). Phys. Rev. B 65, 155308 (2002).

    Article  ADS  Google Scholar 

  24. Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Wang, Y. et al. Unlocking the ambient temperature effect on FA-based perovskites crystallization by in situ optical method. Adv. Mater. 36, e2307635 (2024).

    Article  PubMed  Google Scholar 

  26. Braly, I. L. et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photon. 12, 355–361 (2018).

    Article  ADS  CAS  Google Scholar 

  27. Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted perovskite solar cells. Science 380, 404–409 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Cho, C. et al. Efficient vertical charge transport in polycrystalline halide perovskites revealed by four-dimensional tracking of charge carriers. Nat. Mater. 21, 1388–1395 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Zhu, Y. et al. Direct atomic scale characterization of the surface structure and planar defects in the organic-inorganic hybrid CH3NH3PbI3 by Cryo-TEM. Nano Energy 73, 104820 (2020).

    Article  CAS  Google Scholar 

  31. Zhao, L. et al. Enabling full-scale grain boundary mitigation in polycrystalline perovskite solids. Sci. Adv. 8, eabo3733 (2022).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, W. et al. Impact of interface energetic alignment and mobile ions on charge carrier accumulation and extraction in p-i-n perovskite solar cells. Adv. Energy Mater. 13, 2301102 (2023).

    Article  CAS  Google Scholar 

  33. Caprioglio, P. et al. On the origin of the ideality factor in perovskite solar cells. Adv. Energy Mater. 10, 2000502 (2020).

    Article  CAS  Google Scholar 

  34. Caprioglio, P. et al. Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells. Nat. Commun. 14, 932 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  ADS  Google Scholar 

  36. Yu, M. et al. High‐radiance near‐infrared perovskite light‐emitting diodes with improved roll‐off degradation. Adv. Opt. Mater. 11, 2202043 (2022).

    Article  Google Scholar 

  37. Sjöström, M. & Squire, J. M. Cryo-ultramicrotomy and myofibrillar fine structure: a review. J. Microsc. 111, 239–278 (1977).

    Article  PubMed  Google Scholar 

  38. Zhang, H., Wang, C. & Zhou, G. Ultra-microtome for the preparation of TEM specimens from battery cathodes. Microsc. Microanal. 26, 867–877 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  41. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  42. Liu, N. & Yam, C. First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800–6804 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. J. Phys. Chem. Lett. 5, 2903–2909 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Frohna, K. et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat. Nanotechnol. 17, 190–196 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (52325310, 52203208, 52403369 and 52303217), the Beijing Natural Science Foundation (JQ21005), the National Key R&D Program of China (2021YFB3800100, 2021YFB3800101 and 2021YFB3802400), the open research fund of Songshan Lake Materials Laboratory (2022SLABFK07), the Yunnan Provincial Science and Technology Project at Southwest United Graduate School (202302AO370013), the Natural Science Foundation of Jiangsu Province (BK20220302), the Nantong Basic Science Research Program (JC12022036) and the R&D Fruit Fund (20210001). This work was also sponsored by the Beijing Nova Program (20220484148 and 20230484480). H.J.S. acknowledges funding from the Engineering and Physical Sciences Research Council (EPSRC) (grant no. EP/S004947/1). S.D.S. acknowledges the Royal Society and Tata Group (grant no. UF150033) and funding from the European Research Council under the Horizon 2020 research and innovation programme of the European Union (HYPERION, grant agreement no. 756962; PEROVSCI, 957513) and EPSRC (EP/R023980/1, EP/V027131/1 and EP/V012932/1). K.S.N. acknowledges support from the Ministry of Education, Singapore (Research Centre of Excellence award to the Institute for Functional Intelligent Materials, I-FIM, project no. EDUNC-33-18-279-V12), and from the Royal Society (UK, grant no. RSRP\R\190000). J.R.D. acknowledges the funding from the Application Targeted and Integrated Photovoltaics (ATIP) project (EP/T028513/1) from EPSRC. Y.X. acknowledges the China Oxford Scholarship Fund and the GCRF grant from Research England. L.D. acknowledges funding support from European Research Council under the European Union’s Horizon 2020 research and innovation programme (ERC fundings: PEROVSCI, 957513 & HYPERION, 756962) and UKRI Horizon Europe Guarantee MSCA Marie Skłodowska-Curie Postdoctoral Fellowship (EP/Y029429/1). S.J.Z. acknowledges support from the Polish National Agency for Academic Exchange within the Bekker program (grant no. PPN/BEK/2020/1/00264/U/00001). K.A.E. acknowledges the support of the Rank Prize through a Return to Research grant. M.D. and S.D.S. thank the Leverhulme Trust (RPG-2021-191) for funding. M.D. acknowledges UKRI guarantee funding for Marie Sklodowska-Curie Actions Postdoctoral Fellowships 2022 (EP/Y024648/1). C.C. acknowledges the support of a Marshall Scholarship and a Winton Scholarship. I.H. acknowledges the Oppenheimer Memorial Trust and the Firstrand Foundation for funding. P.H. acknowledges the computational resources at the National Supercomputing Center of Singapore (NSCC). Y.X. acknowledges M. Riede and P. Kaienburg from Oxford University for their general advice. W.X. acknowledges B. Moss for help with operando photoluminescence setup development and L. J. F. Hart for assistance on the measurement.

Author information

Authors and Affiliations

Authors

Contributions

D.L. and R.Z. conceived the project idea. D.L., S.D.S., H.J.S., R.Z., S.L., Y.X. and R.S. designed the experiments. S.L., P. Chen., T.H., Z.L., Y.X., H.-H.C., C.L. and J. Wu fabricated the PSCs and characterized the photovoltaic performances. S.L. and P. Chen. performed the EQE measurements of the PSCs. R.S. performed the optical simulation and did data analysis. B.H. conducted the Cryo-TEM sample preparation, tests and data analysis. P.H. and K.S.N. contributed to the DFT calculations. R.S., I.H., Y.X. and D.W. contributed to the tests and fitting of the optical constant of materials used in the optical simulation. K.A.E., L.M.H. and Y.X. contributed to the analysis of charge-carrier transport inside micron-thick perovskite absorbers. W.X., S.D.S and J.R.D. contributed to the analysis of operando photoluminescence and electroluminescence. M.D., C.C. and W.X. contributed to the analysis of hyperspectral microscopy. W.X., D.G. and L.D. performed the TRPL measurements and did data analysis. S.L. and Y.X. performed the light absorption measurements. S.L. and L.Z. contributed to the analysis of the XRD data. J.H. performed REELS, UPS and XPS measurements. J.H., D.L., R.S. and Z.-H.L. contributed to the analysis of REELS, UPS and XPS results. Y.B. and S.J.Z. contributed to the PDS measurements and did data analysis. L.D. and B.A.I.L. contributed to the TA measurements and did data analysis. Y.X., P. Caprioglio and A.D. contributed to the analysis of QFLS and VOC limits. Jianpu Wang and Jingmin Wang contributed to the PLQY results. S.L., J.H., H.Y., Q.L. and L.Z. contributed to the SEM measurements and did data analysis. S.L., H.Y. and Y.X. performed the stability test. D.L., Q.G., S.D.S., H.J.S. and R.Z. directed and supervised the project. S.L. R.S. and Y.X. wrote the first draft of the paper. D.L., B.H., Q.G., S.D.S., H.J.S. and R.Z. revised the paper. All authors analysed their data and reviewed and commented on the paper.

Corresponding authors

Correspondence to Deying Luo, Bing Han, Qihuang Gong, Samuel D. Stranks, Henry J. Snaith or Rui Zhu.

Ethics declarations

Competing interests

H.J.S. is a co-founder and the Chief Scientific Officer of Oxford PV, a company commercializing perovskite solar cells. S.D.S. is a co-founder of Swift Solar. All other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Yongsheng Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Notes 1–7, Supplementary Figs. 1–45, Supplementary Tables 1–4 and Supplementary References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Xiao, Y., Su, R. et al. Coherent growth of high-Miller-index facets enhances perovskite solar cells. Nature 635, 874–881 (2024). https://doi.org/10.1038/s41586-024-08159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-08159-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing